Dictionary Learning Based Applications in Image
Processing using Convex Optimisation

Abhay Kumar (12011)
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Email: abhayk @iitk.ac.in

Abstract—In this term paper, sparse based representation
of images has been exploited for various applications. Sparse
and redundant representation is based on the assumptions that
the signals can be described as a linear combination of a few
atoms from the pre-defined dictionary. Dictionary atoms is either
selected using k-SVD algorithm or taken as standard DCT atoms.
Dictionary atoms can Iso be set by randomly sampling patches
from the image. Different applications of sparse based represen-
tation have been presented. Image Inpainting, classification and
Image denoising applications based on sparse representation are
presented. Sparse representation based applications have very
similar performances with the state of the art methods.

Keywords—Sparse, OMP, K-SVD, DCT.

I. Introduction

Natural signals such as images admit a sparse represen-
tation i.e. they can be represented as a linear combination
of few vectors (atoms of a learned dictionary). It has been
established that there is much redundancy in natural signals.
It can be represented in terms of few basis vectors. Since the
sparse representation consists of mostly zeros, we only have
to store only the non-zero elements. Generally, Sparse based
approaches are computationally more efficient in terms of
computation and memory requirements. Sparse representation
are also discriminative in nature and are extensively used for
classification purpose as well.

Sparse representations of signals have received a lot of
interests in recent years. Sparse representation is exploited to
give the most compact representation of a signal. Any signal
can be represented as a linear combination of atoms in an
overcomplete dictionary. Recent developments in multi-scale
and multi-orientation representation of signals are an important
incentive for the research on the sparse representation. Differ-
ent dictionary learning algorithms such as matching pursuit, or-
thogonal matching pursuit, method of optimal direction (MOD)
or k-singular value decomposition (k-SVD) are extensively
popular in the literature. Sparse representation have been
exploited for various applications such as signal separation,
denoising, classification, image inpainting and reconstruction.
Overcomplete dictionary has Using an overcomplete dictio-
nary contains prototype of signal-atoms or combined multiple
standard transforms, like curvelet transform, ridgelet transform
and discrete cosine transform(DCT).

Sparse representation is highly dependent on the basis
chosen. The number of atoms that represent a given signal i.e

Saurabh Kataria (12807637)
Department of Electrical Engineering
Indian Institute of Technology, Kanpur
Email: saurabhk @iitk.ac.in

the sparsity varies with the basis chosen. The task to find the
smallest set of atoms that represent a given signal is NP-hard.
Hence, several approximation algorithms have been suggested,
such as the matching pursuit, the basis pursuit, FOCUSS, and
their variants.

A. Sparse Representation of Signals and Images

Given an overcomplete dictionary ¢™* that contains K
dictionary atoms, a signal y € R™ can be represented in terms
of a vector x € R* that contains the representation coefficients
of the signal y. The sparse representation problem can be
formulated as:

min |x|lp s.t. Dx=y €))]
X

where ||X||o is the /[y norm, that counts the total number of non-
zero elements in X. Also, the above optimisation problem is
not convex and the solution for the [, norm has been shown
to be NP-hard The [is relaxed to /; norm. In order for the
signal reconstruction to be robust to noise, above optimisation
problem is formulated as:

min [|xlly - s.t. [ly —Dxllz <e 2
where € is the permitted error in the reconstruction Least Ab-
solute Shrinkage and Selection Operator (LASSO) is a method
proposed by Tibshirani [1] to solve the I/; -minimization
problem more efficiently. LASSO finds an estimate of x
by minimizing the least square error subject to a /; norm
constraint in the solution vector, formulated as:

1
min EHY - Dx]f; + BliIx|ly 3

where 8 > 0 is the parameter that controls the trade-
off between the sparsity and the reconstruction error. This
convex optimisation problem will give the globally optimal
solution. On the contrary, various greedy algorithms like
Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP),
and Compressive Sampling Pursuit (CoSaMP) try to find the
best solution to the problem iteratively. Greedy algorithms may
not find the optimal solution but find a local solution that
approximates to the global solution.

The rest of the paper is organized as follows. Section II
presents the state of the art dictionary learning algorithms.
Three different applications of sparse representation in image
processing with performance evaluation and the results is

presented in section III. A brief conclusion is presented in
Section IV and Section V gives the scope of future work in
this respect.

II. Dictionary Learning and Sparse Representation

While pre-constructed or adapted dictionaries typically lead
to fast transforms (of complexity O(n log n) instead of nm
in a direct use), they are typically limited in their ability to
sparsify the signals they are designed to handle. Furthermore,
most of those dictionaries are restricted to signals/images of a
certain type, and cannot be used for a new and arbitrary family
of signals of interest. This leads us to yet another approach
for obtaining dictionaries that overcomes these limitations by
adopting a learning point-of-view. This learning option starts
by building a training database of signal instances, similar
to those anticipated in the application, and constructing an
empirically learned dictionary, in which the generating atoms
come from the underlying empirical data, rather than from
some theoretical model [2]. Such a dictionary can then be
used in the application as a fixed and redundant dictionary.
We wish to estimate D given the model deviation. Consider
the following optimization problem:

min ¥¥ [Ixillg subject toly; - Dxill, <€, 1<i<M (4)

D.ix))!

Alternatively, above problem can also be formulated as:
min > llyi - Dxil2 subject to [Ixillg <ks, 1<i<M
h

D.{x;
(5)

A. Method of Optimal Direction (MOD))

Above problems can be posed as a nested minimization
problem: an inner minimization of the number of nonzeros
in the representation vectors x;, for a given fixed D and
an outer minimization over D [3]. A strategy of alternating
minimization thus seems very natural. At the k-th iteration,
we use the dictionary Dy-—yy from the k — 1th step and solve
M instances of entry y;, and each using the dictionary D-y).
This gives us the matrix Xy, and we then solve for Dy by
Least-Squares.

Dy = argmin||Y — DXg|l> (6)
D

=YX (X Xo)™! (7)

= YX{, ()

where X

® is the pseudo-inverse.

B. k-singular value decomposition (k-SVD)

The sparse representation problem can be viewed as a
generalization of the Vector Quantisation objective function, in
which we allow each input signal to be represented by a linear
combination of codewords. In dictionary learning, dictionary
atoms are the analogical to the codewords. Now, coefficients
vector can have more than one nonzero entry and arbitrary
values. The objective problem for k-SVD dictionary learning
is:

min [[Y - DX|: subjectto |[xillo<ko Vi (9

where Y = {y;| 1 in [1, K], y; € R"} and X is formed by column
stacking all vectors x; and ||||12, denotes the Frobenius norm
square.

General views of the different steps in k-SVD algorithm
are mentioned here:

e The K-SVD algorithm [4] tries to minimize the cost
function iteratively. It first find a sparse representa-
tion for the given signals using the standard OMP
algorithm, using an initial estimate of the dictionary.
This coding is sought such that it minimizes the error
in representation, and at the same time maintain the
sparsity constraint

e After the sparse coding stage, the algorithm proceeds
to update the atoms of the dictionary. One atom of
the dictionary is updated at a time such that the error
term is further reduced. Proceeding in similar manner,
the algorithm reduces error of representation at each
iteration.

The representation error term can thus be modified
and written as

IY = DXIif = Y - 2, dix{ I} (10)
=Y - Zjacdix; —dixpliy (1D
= |[Ex — diox I (12)

e Error term has two parts depending on whether when
the atom dy is not taken into account or nor. Also, we
have achieved the decomposition of the multiplication
of matrices into a summation of K rank-1 matrices.
Of these, the first K — 1 are assumed to fixed. The
problem of minimizing the total error thus boils down
to finding a rank-1 matrix which best approximates
the error matrix E;. We can’t perform singular value
decomposition on Ek and use the largest singular value
and its corresponding vector for estimating the matrix
as this doesn’t take into account the sparsity constraint
of the resulting X matrix.

e We first need to identify all the signals that use the k-
th atom of the dictionary. Then split the error into two
terms, one term defining the error of representation of
those signals with the dx atom removed and the rest
for all other atoms

Y - DX|12 = [[ER — d\xR)2 (13)

where E]lf takes into account the error for just those
signals that are supported by the atom dix. Now the
The error function minimization can be carried out
by a rank-1 approximation of the EE matrix using a
singular value decomposition.

C. Orthogonal Matching Pursuit (OMP)

The Orthogonal Matching Pursuit (OMP) algorithm [5], [6]
is a greedy algorithm with attempts to find a sparse represen-
tation of a signal given a specific dictionary. The algorithm
attempts to find the best basis vectors (atoms) iteratively such
that in each iteration the error in representation is reduced. This
achieved by selection of that atom from the dictionary which
has the largest absolute projection on the error vector. This

essentially implies that we select that atom, which adds the
maximum information and hence maximally reduces the error
in reconstruction. Given a signal vector y and a dictionary D
the algorithm attempts to find the code vector x in three steps

e Select the atom which has maximal projection on the
residual

e Update x* = argmin¥ |ly — Dx¥||,

e Update the residual r* =y — y*

III. Three Applications of Dictionary Learning and
sparse representation in Image Processing

In this section, three different applications based on sparse
representation , namely Image Inpainting , Image Denoising
and Image classification have been presented.

A. Image Impainting

Image Inpainting is a method of filling up the missing
pixels in an image with the help of the existing pixels. In-
painting is often referred to as disocclusion, meaning removing
a obstruction or unmask a masked image. The success of
inpainting lies on how well it infers the missing pixels from the
observed pixels[7], [8]. Broadly there are there are two main
appoaches for image inpainting: PDE based approaches and
exemplar based approaches. The formers is based on structure
propagation while the later approaches adopt texture synthesis
method to synthesize the pixels in the user specified region.
Given the dictionary D = [d',d?, ...,dN] and the input signal
y= [yl,yz, ...,yP]T, the coefficients can be estimated using the
Lasso algorithm:

% = argmin ||y — Dx|}3 + BlIxlls (14)

The term ||x||; encourages the sparsity of the coefficient vector
and S controls the tradeoff between reconstruction error and
sparsity. We can generalize the above formulation accounting
the corrupted components as well.

y=Dx+e (15)

where e is the error and e; is non-zero for the corrupted
component. Target region to be inpainted is known beforehand
i.e the indices of the corrupted components of y are known.
Lets denote the corrupted components index set by / where
I = {ile; # 0}. y\1 denotes the denotes the vector obtained by
removing the corrupted components i.e whose indexes are in
I from y. Dyis the corresponding reduced dictionary matrix,
obtained after removing all the columns whose indexes are in
I from D.Now the sparse coefficient x can be estimated as
follows.

% = argmin [ly,, — Dy/xIl3 + BlIxls (16)

X

Now the corrupted image is recovered by the following rule:

R Vi, if i ¢ 1
= 1
% {(Dﬁ),-, ifiel an
The user selects the region to be removed or filled. Lets
denote this ’target region’ as and the remaining region
is called the ’source region’ and it is denoted as ®. The
boundary of target region is denoted by 6€2. Now, priority P(p)

is computed for all pixels on the target boundary. Pixel with
maximum priority is filled or removed first.

Now consider the k-dimensional patch centred at p,,.
Denote the patch as ¥,,. Some pixels of the patch belongs
to the source region and other belongs to the target regions.
Recover the corrupted pixels of the patch W), using equations
(16) and (17).

% = argmin ['¥),,, - D\xl5 + Blxllx (18)
X
v ifigl
jo= e 1 0E (19)
Dx);, ifiel

Algorithm 1 : Image Impainting via sparse representation

Input :Image, source region ®,target region Q (user speci-
fied)
Dictionary Construction : Either learn a dictionary by k-
SVD, MOD methods or take some standard overcomplete
dictionary. Dictionary can also be formed by sampling
random patches from the source region of the given image.
Recovery of corrupted pixels in target region :
e compute priority for all pixels on the target boundary.
o Select the patch with maximum priority.
e Use reconstruction equations (18) and (19) to recover
the corrupted pixels.
e set the pixel of target region of the selcected patch
to the recovered values. Update the target boundary
o0Q.

output : Inpainted image.

Fig. 1. Input Image [9]

Comment on image inpainting for various values of S:

e In this case, inpainting is better for lower value of
sparsity i.e higher value of S . This is mainly be-
cause of distinct dictionary atoms, which are randomly
choosen. The dictionary atoms seems to be sparse
so that lesser number of distinct atoms is sufficient
enough to get better reconstruction.

e Since we have not taken into account any edge infor-
mation or structure of image explicitly, reconstruction

Fig. 2. Binary image illustrating the target region

Fig. 3. Inpainted image after removing the target region 8 = 10

may not be good enough sometimes (generally for
complex images).

B. Image Denoising

From the theory it is obvious that if the signal vectors have
a high dimensionality, the size of the dictionary needs to be
large for a stable acceptable reconstruction. This may not be
the most suitable thing to do as the computational complexity
scales up with the size of the vectors and the number of
atoms in the dictionary. To address this issue the authors
propose to break up the noisy image into patches and treat the
vectorized version of each patch as signals, thereby restricting
the dimensionality of each atom in the dictionary. However,
the size of the patch has to be chosen such that it encodes
enough details of the underlying signal. It is also natural to
select these patches to be overlapping in nature in order to
reduce blocking artefacts that might result at the boundaries.
Dealing with patches as signals, the K-SVD algorithm can be
effectively scaled to denoise large images.

Application of the method to denoising necessitates posing
the problem of denoising first. For a given image, which can
now be thought of as a set of signals Y, the denoising problem
can be stated as the ill-posed problem of finding a set of

Fig. 4. Inpainted image after removing the target region with 8 = 1

patches Z which are related by
Y=Z+n (20)

[10], [11] where n is assumed to be the noise which corrupts
the patches. The noise over the entire image is assumed to be
zero mean Gaussian noise. In order to find the denoised image
patches Z, we define an optimization problem which involves
minimization of the cost function:

X,Z = argmin ||Z - Y| + BIDX - ZI[3 + ¥; pillxillo (21
X,Z

This can be viewed as solving a set of smaller optimization
problems which is defined by:

%, Z = argmin ||Z - Y[} + BIDx; - RZI% + 3, millxillo (22)
Xi,Z

where R; is defined as the matrix which selects the ith patch
from Z i.e. z; = R;Z. This cost function allows us to minimize
the error between the restored image and the input noisy one,
under the assumption that each patch in the input image can
be represented as a sparse linear combination of patches in
the dictionary D. Ideally, for denoising the first term should
be rewritten as [|ZY|3 < Co® where C is a constant and o
is the variance of the noise. However, this term is implicitly
incorporated into the cost function in the selection of the g
parameter which will depend of the noise variance. The closed
form solution to this cost function is given by

BY + 3 RiDx;
AL+ 3, RTR,

The solution to this problem thus involves averaging of over-
lapping patches after each patch has been sparse coded along
with a weighted sum of the original noisy patch. Each pixel
in a patch is hence a weighted linear combination of different
pixels, the weights being derived from the sparse coding. Since
the patches are overlapping, the final value of each pixel is thus
an average of all representations obtained from sparse coding
stage.

7= (23)

1) Comment on result:: The denoised image from the
sparse based approach has similar SNR as some of standard
denoising algorithms.

Fig. 5. Origianl Image [9]

Fig. 6. Noisy image o = 10

C. Image classification

If the natural signal has sparse representation with respect
to a learned dictionary, then the dictionary atoms are distinctive
in nature. We can use those coefficient vectors of the dictionary
atoms as a feature for classification. We have applied image
classification technique for binary classification problem. [12]—
[14].

TABLE 1. Accuracy
Differnt Method for MNIST dataset | Accuracy
Sparse based Image classification 81.3
Conventional method like KNN 96.65

1) Comments:: Although the accuracy of sparse based
approach is not as high as some of the conventional classi-
fication methods, but sparse based approach may prove to be
computationally more feasible if we are able to get a good
dictionary. Classification accuracy is highly dependent on how
the dictionary atoms are discriminative. Sparse based approach
also seems to give close to 80% accuracy.

IV. ConcLusioN

In this term paper, we have briefly described various dic-
tionary learning algorithms like k-SVD, MOD etc. Dictionary

Fig. 7. Denoised Image

Algorithm 2 : Image classification via sparse representation

dataset :Images of ’0’ digit and ’1’ digit from MNIST
database. Label y for O digit is -1 and for 1 digit it is +1.
Image size : 64 x 64

Dictionary Construction : Either learn a dictionary by k-
SVD, MOD methods or take some standard overcomplete
dictionary. Dictionary can also be formed by sampling
random patches from the source region of the given image.
Randomly Initialise dictionary D of size (784 x 1000) and
weight vector w of size (1000 x 1).

Solve Optimisation problem 1 : Solve the following
optimisation problem to calculate the sparse representation
@ for each training vector x w.r.t. the dictionary D:

#(x.D) = argmin 71x ~ Do} + Bulel + 221} 24)
acRP

feature vector : & can be treated as a feature vector of x

with respect to the Dictionary D

Solve Optimisation problem 2 : Now update w and D after

solving the following optimisation problem.

min_ E[log(1 + exp(—yw’ &(x, D)] + B

i 2
min SIwiE 29)

Solve Optimisation problem 2 : Now update w and D after
solving the following optimisation problem.

Iteration : Go to optimisation problem 1 and do this for
some iterations.

Testing :Now the training is complete and we have D and
w. For a given test vector x, find its sparse representation
& and calculate 7 = wla. If t < 0, predicted label is —1. If
t > 0, predicted label is +1.

output : Labels for test images

learning methods varies depending on the applications. we
have briefly reviewed sparse and redundant representations as
a new model that harnesses the local low-dimensional structure
of natural images. Generally, standard DCT or random patches
from the images act as good dictionary atoms. Once the dic-
tionary is learnt, we can have the sparse representation of the
signal in terms of the dictionary atoms. Sparse representation
have various image processing based applications like image
denoising, reconstruction, image inpainting, image classifica-

tion. Three applications of the sparse based representation of
images are presented in the paper with the simulation and

(4]

Q. Zhang and B. Li, “Discriminative k-svd for dictionary learning in
face recognition,” in Computer Vision and Pattern Recognition (CVPR),

results. 2010 IEEE Conference on. 1EEE, 2010, pp. 2691-2698.

[5] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Signals, Systems and Computers, 1993. 1993 Con-
ference Record of The Twenty-Seventh Asilomar Conference on. 1EEE,
1993, pp. 40-44.

V. FUTUTRE WORK

Within this framework of sparse based representation, more
efficient and effective solutions to many conventional image
processing tasks, including but not limited to image com- [6]
pression, denoising, deblurring, inpainting, super resolution,
segmentation, can be explored. Despite its success so far,
many difficult and open problems remain regarding why these [7]
algorithms work so well and under what conditions. We hope
to investigate these problems in future.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” Information Theory, IEEE
Transactions on, vol. 53, no. 12, pp. 46554666, 2007.

B. Shen, W. Hu, Y. Zhang, and Y.-J. Zhang, “Image inpainting via
sparse representation,” in Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009,
pp. 697-700.

[8] S. K. Sahoo and W. Lu, “Image denoising using sparse approximation
with adaptive window selection,” in Information, Communications and
Signal Processing (ICICS) 2011 8th International Conference on.
IEEE, 2011, pp. 1-5.

LLC.

VI. Cobgs SUBMITTED

1) image inpainting using cvx

2) image inpainting using omp.m

3) Image classification for MNIST dataset.

4) knn classifier for MNIST dataset so as to compare
the result with sparse based approach. (python code
with MNIST read file available from internet) [10]

5) Image denoising with k-svd dictionary

6) image denoising with DCT dictionary

[91 M. (1999) MS Windows NT
kernel description. [Online]. Available:
http://wallpaperswa.com/Nature/Fields/landscapes, ature rieldsglow.vening sky1 1276

K. Su, H. Fu, B. Du, H. Cheng, H. Wang, and D. Zhang, “Image
denoising based on learning over-complete dictionary,” in Fuzzy Systems and
Knowledge Discovery (FSKD), 2012 9th International Conference on, May
2012, pp. 395-398.

M. Elad, M. A. Figueiredo, and Y. Ma, “On the role of sparse and redundant
representations in image processing.”

M. Yang, D. Dai, L. Shen, and L. V. Gool, “Latent dictionary learning
for sparse representation based classification,” in 2014 IEEE Conference on
Computer Vision and Pattern Recognition, June 2014, pp. 4138-4145.

REFERENCES [11]

[1] R. Tibshirani, “Regression shrinkage and selection via the lasso,[12]
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267-288, 1996.

[2] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutionf1 3]
of systems of equations to sparse modeling of signals and images,”
SIAM review, vol. 51, no. 1, pp. 34-81, 2009.

[3] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discrimina-
tive learned dictionaries for local image analysis,” in Computer Visiohl4]
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on.
IEEE, 2008, pp. 1-8.

J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 4, pp.
791-804, 2012.

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 210-227, 2009.

1) image inpainting using cvx

clear all; clc; close all;

source_img=double(imread('pic12.png')); figure;imshow(uint8(source_img));
target_img=double(imread('mask12.png"));figure;imshow(uint8(target_img));
target_img= ~(rgb2gray(target_img));

[row_ind,col_ind] = find(~target_img);

[left_most_row_index,~] = min(row_ind);

[right_most_row_index,~] = max(row_ind);

[bottom_most_col_index,~] = max(col_ind);

[top_most_col_index,~] = min(col_ind);

patch_cell_r = mat2cell(source_img(:,:,1), 8*ones(1,size(source_img,1)/8),
8*ones(1,size(source_img,2)/8));
patch_cell_g = mat2cell(source_img(:,:,2), 8*ones(1,size(source_img,1)/8),
8*ones(1,size(source_img,2)/8));
patch_cell_b = mat2cell(source_img(:,:,3), 8*ones(1,size(source_img,1)/8),
8*ones(1,size(source_img,2)/8));

%%%% target image %%%%%%
patch_cell_target_r = mat2cell(target_img(:,:,1), 8*ones(1,size(target_img,1)/8),
8*ones(1,size(target_img,2)/8));
Num_NonZero_pixels = zeros(32,32);
temp = [];
templ = [];
temp2 = [];
fori=1:32
forj=1:32
x = reshape(patch_cell_target_r{i,j},64,1);
Num_NonZero_pixels(i,j) = nnz(x);
if Num_NonZero_pixels(i,j) == 64
temp = [temp;Num_NonZero_pixels(i,j)];
temp1 = [temp1;i];
temp2 = [temp2;j];
end
end
end

%%%%%%%%%%% Dictionary by sampling images %% % %% % %% %% %% %% %% %% %% %
Dict_size = 128;

rng(‘shuffle");

r = randi([1 size(temp1,1)],1,Dict_size);

Dict_R_value = zeros(64, Dict_size);
Dict_G_value = zeros(64, Dict_size);
Dict_B_value = zeros(64, Dict_size);

for i=1:Dict_size

p = temp1(i);

q = temp2(i);

x = reshape(patch_cell_r{p,q},64,1);
Dict_R_value(:,i) = x;

x = reshape(patch_cell_g{p,q},64,1);
Dict_G_value(:,i) = x;

x = reshape(patch_cell_b{p,q},64,1);
Dict_B_value(:,i) = x;

end

% figure;

% for i = 1:Dict_size/2

% subplot(8,8,i);

% imshow(uint8(patch_cell_r{temp1(i),temp2(i)}));

% end

% figure;

% for i = 1:Dict_size/2

% subplot(8,8,i);

% imshow(uint8(patch_cell_r{temp1(i+Dict_size/2),temp2(i+Dict_size/2)}));
% end

90%%% %% %% % % %% %% %% % %% % % % %% %% %% %% % % % %% %% %% %% %% sliding
window and reconstructin using OMP %% %% %% % % % %% %% %% %% %% %%%%%%%
k=1; %%% sparsity = k %%%
pP=3;
q=4
lambdal=10;
% figure;
% imshow(uint8(source_img(left_most_row_index-
p:left_most_row_index+q,top_most_col_index+3-p:top_most_col_index+3+q)));
for i = left_most_row_index:right_most_row_index
for j = top_most_col_index:bottom_most_col_index
data_vect_R = reshape(source_img(i-p:i+q,j-p:j+q,1),64,1);
data_vect_G = reshape(source_img(i-p:i+q,j-p:j+q,2),64,1);
data_vect_B = reshape(source_img(i-p:i+q,j-p:j+q,3),64,1);
d=128;
cvx_begin
variable y(d)
minimize(0.5*norm(Dict_R_value*y-data_vect_R)+lambdal*norm(y,1))
cvx_end
alpha_R =y;
cvx_begin
variable y(d)
minimize(0.5*norm(Dict_G_value*y-data_vect_G)+lambdal*norm(y,1))
cvx_end
alpha_G =y;
cvx_begin
variable y(d)
minimize(0.5*norm(Dict_B_value*y-data_vect_B)+lambdal*norm(y,1))
cvx_end
alpha_B =y;

%
%
%

alpha_G = omp(data_vect_G,Dict_G_value,k);
alpha_B = omp(data_vect_B,Dict_B_value,k);

recontructed_patch_R = reshape(Dict_R_value * alpha_R, 8, 8);
recontructed_patch_G = reshape(Dict_G_value * alpha_G, 8, 8);
recontructed_patch_B = reshape(Dict_B_value * alpha_B, 8, 8);

%
%
%
%
%
%

alpha_R = OMP_1(k,data_vect_R',Dict_R_value);
alpha_G = OMP_1(k,data_vect_G',Dict_G_value);
alpha_B = OMP_1(k,data_vect_B',Dict_B_value);
recontructed_patch_R = reshape(Dict_R_value * alpha_R', 8, 8);
recontructed_patch_G = reshape(Dict_G_value * alpha_G/, 8, 8);
recontructed_patch_B = reshape(Dict_B_value * alpha_B', 8, 8);

window_patch = target_img(i-p:i+q,j-p:j+q);

source_img(i-p:i+q,j-p:j+q,1) = source_img(i-p:i+q,j-p:j+q,1).*window_patch +
recontructed_patch_R.*(~window_patch);

source_img(i-p:i+q,j-p:j+q,2) = source_img(i-p:i+q,j-p:j+q,2).*window_patch +
recontructed_patch_G.*(~window_patch);

source_img(i-p:i+q,j-p:j+q,3) = source_img(i-p:i+q,j-p:j+q,3).*window_patch +
recontructed_patch_B.*(~window_patch);

%

%
%
%

%
%
%
%

%
%
%

%
%
%

end
end

target_img(i-p:i+q,j-p:j+q) = ones(8,8);

source_img(i-p:i+q,j-p:j+q,1) = recontructed_patch_R.*(~window_patch);
source_img(i-p:i+q,j-p:j+q,2) = recontructed_patch_G.*(~window_patch) ;
source_img(i-p:i+q,j-p:j+q,3) = recontructed_patch_B.*(~window_patch) ;

if i ==left_most_row_index && j == top_most_col_index+3
figure;
imshow(uint8(source_img(i-p:i+q,j-p:j+q)));

end

source_img(i-7:i,j-7:j,1) = source_img(i-7:i,j-7:j,1).*window_patch ;
source_img(i-7:1,j-7:j,2) = source_img(i-7:1,j-7:j,2).*window_patch ;
source_img(i-7:i,j-7:j,3) = source_img(i-7:i,j-7:j,3).*window_patch ;

source_img(i-7:i,j-7:j,1) = recontructed_patch_R.*(~window_patch) ;
source_img(i-7:1,j-7:j,2) = recontructed_patch_G.*(~window_patch) ;
source_img(i-7:i,j-7:j,3) = recontructed_patch_B.*(~window_patch) ;

figure;imshow(uint8(source_img));

2) Omp.m

function x = omp(data_vector,Dict_matrix,sparsity)

N = size(Dict_matrix,2); % compute k-sparse approximation to b with matrix A
using Matching pursuit

x = zeros(N,1);

res = data_vector;

support = []; % empty support
for i = 1:sparsity

corr = Dict_matrix'*res; % compute correlation between residual and columns
of A

[~,n] = max(abs(corr)); % find position n (and value c) of the maximally correlated
column

support(end+1) = n; % extend the support

x(support) = pinv(Dict_matrix(:,support))*data_vector; % update the representation

%res = res - Dict_matrix(:,support)*x(support); % update the residual

res = data_vector - Dict_matrix(:,support)*x(support);
end
end

3)Image classification for MNIST dataset

load('mnist01.mat');

N = size(trainX, 2); % dimension of data i.e. 784

n = size(trainX, 1); % number of traininng examples i.e. 87
d = 50; % number of atoms in dictionary, D, is now N x d
D = randn(N,d); % random initialisation of dictionary D

w = randn(d,1); % weight vector

alpha = zeros(d,n);

numlter = 25; % number of iterations set beforehand

lambdal = 10;
lambda2=10;
sum = 0;

param.L = 3; % number of elements in each linear combination.
param.K = 50; % number of dictionary elements
param.numlteration = 50; % number of iteration to execute the K-SVD algorithm.

param.errorFlag = 0; % decompose signals until a certain error is reached. do not use fix number of
coefficients.

%param.errorGoal = sigma;

param.preserveDCAtom = 0;

param.InitializationMethod = 'DataElements';

param.displayProgress = 1;

[D,o] = KSVD(trainX',param);
for iter = 1:1
fori=1:n
cvx_begin
variable y(d)
minimize(0.5*norm(D*y-trainX(i,:)")+lambdal*norm(y,1)+lambda2*0.5*norm(y,2))
cvx_end
alpha(:,i) = y; % update all alphas using CVX
end

cvx_begin
variable w(d)
fori=1:n
sum = sum + log(1+exp(-testY (i)*w'*alpha(:,i)));
end
minimize(sum + lambda2*norm(w,2))
cvx_end

end
ntest = size(testX, 1);
accuracy = 0;
temp = zeros(d,1);
temp2 = 0;
n_i=50;
fori=1:n_i
cvx_begin
variable y(d)
minimize(0.5*norm(D*y-testX(i,:)")+lambdal*norm(y,1)+lambda2*0.5*norm(y,2))
cvx_end
temp = y;
temp2 = dot(w,temp);
if((temp2>0 && testY(i) == 1)||(temp2<0 && testY (i) == -1))
accuracy = accuracy + 1;

end
end
accuracy = accuracy/n_i*100;
disp(accuracy);

4) Image classification (knn_python code) to compare the result with the sparse based approach:

import os, struct

import numpy as np

from array import array as pyarray

from numpy import append, array, int8, uint8, zeros
from sklearn.neighbors import KNeighborsClassifier
path_name = "/home/abhay/CS771A/"

def load_mnist(dataset="training", digits=np.arange(10), path="."):

man

Loads MNIST files into 3D numpy arrays

Adapted from: http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py

man

if dataset == "training":
fname_img = os.path.join(path, 'train-images.idx3-ubyte")
fname_lbl = os.path.join(path, 'train-labels.idx1-ubyte")
elif dataset == "testing":
fname_img = os.path.join(path, 't10k-images.idx3-ubyte')
fname_lbl = os.path.join(path, 't10k-labels.idx1-ubyte")
else:
raise ValueError("dataset must be 'testing' or 'training'")

flbl = open(fname_lbl, 'rb")

magic_nr, size = struct.unpack(">II", flbl.read(8))
1bl = pyarray("b", flbl.read())

flbl.close()

fimg = open(fname_img, 'rb")

magic_nr, size, rows, cols = struct.unpack(">IIII", fimg.read(16))
img = pyarray("B", fimg.read())

fimg.close()

ind = [k for k in range(size) if 1bl[k] in digits]
N = len(ind)

images = zeros((N, rows*cols), dtype=uint8)

labels = zeros((N, 1), dtype=int8)

for i in range(len(ind)):
images[i] = array(img[ind[i]*rows*cols : (ind[i]+1)*rows*cols])
labels[i] = Ibl[ind[i]]

return images, labels

load_mnist(dataset="training", digits=np.arange(10), path="/home/abhay/CS771A/")
from pylab import *
Training_images, Training_labels = load_mnist(dataset="training", digits=np.arange(10),
path=path_name)
imshow(images.mean(axis=0), cmap=cm.gray)
show()
print(len(images))
print(images.shape)
metrics = ['minkowski','euclidean’,'chebyshev’,'manhattan’]
Test_images, Test_labels = load_mnist(dataset="testing", digits=np.arange(10), path=path_name)
for metric in metrics:
print(metric)
for i in range(4):
error= 0.0
accuracy = 0.0
knn = KNeighborsClassifier(metric= metric, n_jobs=4, n_neighbors=i+1)

knn.fit(Training_images, Training_labels)
Predicted_label = knn.predict(Test_images)
for k in range(len(Test_labels)):

if Predicted_label[k] != Test_labels[k]:

error += 1.0

accuracy = ((len(Test_labels)-error)*100.0)/(len(Test_labels))
print("n_neighbors is " + str(i))
print(len(Test_labels))
print(error)
print(accuracy)

5)k-SVD (got from internet)

function [Dictionary,output] = KSVD(...
Data,... % an nXN matrix that contins N signals (Y), each of dimension n.
param)
if (~isfield(param,'displayProgress"))
param.displayProgress = 0;
end
totalerr(1) = 99999;
if (isfield(param,'errorFlag")==0)
param.errorFlag = 0;
end

if (isfield(param, TrueDictionary"))
displayErrorWithTrueDictionary = 1;
ErrorBetweenDictionaries = zeros(param.numlteration+1,1);
ratio = zeros(param.numlteration+1,1);

else
displayErrorWithTrueDictionary = 0;
ratio = 0;
end

if (param.preserveDCAtom>0)
FixedDictionaryElement(1:size(Data,1),1) = 1/sqrt(size(Data,1));
else
FixedDictionaryElement = [];
end
% coefficient calculation method is OMP with fixed number of coefficients

if (size(Data,2) < param.K)
disp('Size of data is smaller than the dictionary size. Trivial solution...");
Dictionary = Data(:,1:size(Data,2));
return;
elseif (strcmp(param.InitializationMethod, DataElements"))
Dictionary(:,1:param.K-param.preserveDCAtom) = Data(:,1:param.K-param.preserve DCAtom);
elseif (strcmp(param.InitializationMethod,'GivenMatrix'"))
Dictionary(:,1:param.K-param.preserveDCAtom) = param.initialDictionary(:,1:param.K-
param.preserveDCAtom);
end
% reduce the components in Dictionary that are spanned by the fixed
% elements
if (param.preserveDCAtom)

tmpMat = FixedDictionaryElement \ Dictionary;
Dictionary = Dictionary - FixedDictionaryElement*tmpMat;
end
%normalize the dictionary.
Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary)));
Dictionary = Dictionary.*repmat(sign(Dictionary(1,:)),size(Dictionary,1),1); % multiply in the sign
of the first element.
totalErr = zeros(1,param.numlteration);

% the K-SVD algorithm starts here.

for iterNum = 1:param.numlteration
% find the coefficients
if (param.errorFlag==0)
%CoefMatrix = mexOMPIterative2(Data, [FixedDictionaryElement,Dictionary],param.L);
CoefMatrix = OMP([FixedDictionaryElement,Dictionary],Data, param.L);
else
%CoefMatrix = mexOMPerrIterative(Data,
[FixedDictionaryElement,Dictionary],param.errorGoal);
CoefMatrix = OMPerr([FixedDictionaryElement,Dictionary],Data, param.errorGoal);
param.L = 1;
end

replacedVectorCounter = 0;
rPerm = randperm(size(Dictionary,2));
for j = rPerm
[betterDictionaryElement,CoefMatrix,addedNew Vector] =
I_findBetterDictionaryElement(Data,...
[FixedDictionaryElement,Dictionary],j+size(FixedDictionaryElement,2),...
CoefMatrix ,param.L);
Dictionary(:,j) = betterDictionaryElement;
if (param.preserveDCAtom)
tmpCoef = FixedDictionaryElement\betterDictionaryElement;
Dictionary(:,j) = betterDictionaryElement - FixedDictionaryElement*tmpCoef;
Dictionary(:,j) = Dictionary(:,j)./sqrt(Dictionary(:,j)*Dictionary(:,j));
end
replaced VectorCounter = replaced VectorCounter+addedNew Vector;
end

if (iterNum>1 & param.displayProgress)
if (param.errorFlag==0)
output.totalerr(iterNum-1) = sqgrt(sum(sum((Data-
[FixedDictionaryElement,Dictionary]*CoefMatrix).A2))/prod(size(Data)));
disp(['Iteration ',num2str(iterNum)," Total error is: ',num2str(output.totalerr(iterNum-1))]);
else
output.numCoef(iterNum-1) = length(find(CoefMatrix))/size(Data,2);
disp(['Tteration ',num2str(iterNum)," Average number of coefficients:
",num2str(output.numCoef(iterNum-1))]);
end
end
if (displayErrorWithTrueDictionary)
[ratio(iterNum+1),ErrorBetweenDictionaries(iterNum+1)] =

I_findDistanseBetweenDictionaries(param.TrueDictionary,Dictionary);
disp(strcat(['Iteration ', num2str(iterNum),' ratio of restored elements:
',num2str(ratio(iterNum-+1))]));
output.ratio = ratio;
end
Dictionary =
I_clearDictionary(Dictionary,CoefMatrix(size(FixedDictionaryElement,2)+1:end,:),Data);

if (isfield(param,'waitBarHandle"))
waitbar(iterNum/param.counterForWaitBar);
end
end

output.CoefMatrix = CoefMatrix;

Dictionary = [FixedDictionaryElement,Dictionary];

90%%%% %% % %% %% %% %% %% % % %% % %% % %% %% % % %% %% %% %%
% findBetterDictionaryElement

9%%%% %% % %% %% %% %% %% % % %% % %% %% %% % % % %% %% %% %%

function [betterDictionaryElement,CoefMatrix,NewVectorAdded] =
I_findBetterDictionaryElement(Data,Dictionary,j,CoefMatrix,numCoefUsed)
if (length(who('numCoefUsed"))==0)
numCoefUsed = 1;
end
relevantDatalndices = find(CoefMatrix(j,:)); % the data indices that uses the j'th dictionary element.
if (length(relevantDatalndices)<1) %(length(relevantDatalndices)==0)
ErrorMat = Data-Dictionary*CoefMatrix;
ErrorNormVec = sum(ErrorMat.A2);
[d,i] = max(ErrorNormVec);
betterDictionaryElement = Data(:,i);%ErrorMat(:,i); %
betterDictionaryElement =
betterDictionaryElement./sqrt(betterDictionaryElement*betterDictionaryElement);
betterDictionaryElement = betterDictionaryElement.*sign(betterDictionaryElement(1));
CoefMatrix(j,:) = 0;
NewVectorAdded = 1;
return;
end

NewVectorAdded = 0;

tmpCoefMatrix = CoefMatrix(:,relevantDatalndices);

tmpCoefMatrix(j,:) = 0;% the coeffitients of the element we now improve are not relevant.
errors =(Data(:,relevantDatalndices) - Dictionary*tmpCoefMatrix); % vector of errors that we want
to minimize with the new element

% % the better dictionary element and the values of beta are found using svd.

% % This is because we would like to minimize || errors - beta*element ||_FA2.

% % that is, to approximate the matrix 'errors' with a one-rank matrix. This

% % is done using the largest singular value.
[betterDictionaryElement,singularValue,betaVector] = svds(errors,1);
CoefMatrix(j,relevantDatalndices) = singularValue*betaVector';% *signOfFirstElem

96%%%% %% % % %% %% % %% %% % %% %% % % %% % %% % %% % %% % % % %
% findDistanseBetweenDictionaries

9% % %% %% % % %% %% % % %% %% %% % % %% % % %% % % %% % % %% % % %
function [ratio,totalDistances] = I_findDistanseBetweenDictionaries(original,new)
% first, all the column in oiginal starts with positive values.
catchCounter = 0;
totalDistances = 0;
for i = 1:size(new,2)
new(:,i) = sign(new(1,i))*new(:,i);
end
for i = 1:size(original,2)
d = sign(original(1,i))*original(:,i);
distances =sum ((new-repmat(d,1,size(new,2))).A2);
[minValue,index] = min(distances);
errorOfElement = 1-abs(new(:,index)'*d);
totalDistances = totalDistances+errorOfElement;
catchCounter = catchCounter+(errorOfElement<0.01);
end
ratio = 100*catchCounter/size(original,2);

9% % %% % %% % %% %% % % %% %% %% % % %% % % %% % % %% % % %% % % %
% 1_clearDictionary
9% %% %% %% % %% %% % % %% %% %% % % %% % % %% % % %% % % %% % % %
function Dictionary = I_clearDictionary(Dictionary,CoefMatrix,Data)
T2 =0.99;
T1=3;
K=size(Dictionary,?2);
Er=sum((Data-Dictionary*CoefMatrix).A2,1); % remove identical atoms
G=Dictionary*Dictionary; G = G-diag(diag(G));
for jj=1:1:K,
if max(G(jj,:))>T2 | length(find(abs(CoefMatrix(jj,:))>1e-7))<=T1,
[val,pos]=max(Er);
Ex(pos(1))=0;
Dictionary(:,jj)=Data(:,pos(1))/norm(Data(:,pos(1)));
G=Dictionary*Dictionary; G = G-diag(diag(G));
end;
end;
6) Image denoising

clear all; clc; close all;
source_img=double(rgb2gray(imread('pic12.png'))); figure;imshow(uint8(source_img));
noisy_img = double(imnoise(uint8(source_img), 'gaussian’,0,0.001));
figure; imshow(uint8(noisy_img));

d = size(noisy_img,1);

R = zeros(d,d,d*d/256);

sz = d*d/256;

% d=16;

% sz=4;

% R = zeros(d,d,d*d/64);

% for i=1:sz

% forj=1:(d/8)

% for k = 1:(d/8)

% R((j-1)*8+1:j*8 ,(k-1)*8+1:k*8, i) = ones(8,8);

% end

% end

% end

% d=32;

% sz=16;

% R = zeros(d,d,d*d/64);

forj = 1:(d/16)
for k = 1:(d/16)
R((j-1)*16+1:j*16 ,(k-1)*16+1:k*16, (j-1)*sqrt(sz)+k) = ones(16);
end
end
Pn=ceil(sqrt(2*d));
bb=ceil(sqrt(d));
DCT=zeros(bb,Pn);
for k=0:1:Pn-1,
V=cos([0:1:bb-1]*k*pi/Pn);
if k>0, V=V-mean(V); end,;
DCT(:,k+1)=V/norm(V);
end;
DCT=kron(DCT,DCT);
mu = ones(sz,1);
lambda=1
sumc=0;
sumb=0;
Rf = zeros(16,16,sz);
RE = zeros(d,d);
cvx_begin
variables y(d,d) z(size(DCT,2),sz)

forj = 1:(d/16)
for k = 1:(d/16)
RE=R(:,:, (j-1)*sqrt(sz)+k)*y;
%RI1(:,:,(j-1)*sqrt(sz)+k) = RE((j-1)*16+1:j*16 ,(k-1)*16+1:k*16);
sumb = sumb +norm(DCT*z(:,(j-1)*sqrt(sz)+k)-vec(RE((j-1)*16+1:j*16 ,(k-
1)*16+1:k*16)));

k
end
J
end
% for i=1:sz
%
% sumb = sumb + norm(DCT*z(:,i)-vec(Rf(:,:,i)));
% i
% end
for i=1:sz

sumc = sumc + mu(i)*norm(z(:,i),1);
i
end
minimize(lambda*norm(noisy_img-y,'fro')+ sumc+sumb)
cvx_end

