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NOTATIONS

A, a Scalar
A,a Column vector
A Matrix
AT Transpose
AH Hermitian transpose
‖A‖ Norm of a matrix
|a|, |A| Magnitude of a number
� Hadamard product
exp(A) Element wise exponential of a matrix
expm(A) Matrix exponential
Tr(A) Trace of a matrix
det(A) Determinant of a matrix
IN Identity matrix of dimension N ×N
R Set of real numbers
C Set of complex numbers
L[A] Subspace spanned by columns of A

ABBREVIATIONS

CRB Cramer Rao Bound
DF Direction Finding
DOA Direction Of Arrival
DSHD Differential Spherical Harmonics Domain
DSH-MUSIC Differential Spherical Harmonics-MUSIC
FOV Field Of View
MVDR Minimum Variance Distortion-less Response
NLDR Non-Linear Dimensionality Reduction
SHD Spherical Harmonics Domain
SNR Signal-to-Noise Ratio
ULA Uniform Linear Array
UCA Uniform Circular Array

I. INTRODUCTION

D IFFERENTIAL geometry is a well-known branch of mathematics that uses the techniques of differential
calculus, integral calculus and linear algebra in geometry problems. The use of differential geometry in array

signal processing gives us tools to investigate manifold in terms of parameters like curvature and rate of change
of arc-length (in case of manifold curve) to calculate detection and resolution thresholds and even implement DF
algorithms like MUSIC for a given sensor geometry. Array of various geometries are available now-a-days of which
spherical array enjoys a full 3D FOV and symmetry, due to which it is one of the most widely used array. In this
report, tools of differential geometry are employed to investigate spherical array which are conventionally studied
in spherical harmonics domain. Some useful insights have been formed by performing CRB-analysis and MUSIC
on a 32-sensor spherical array.

II. DIFFERENTIAL GEOMETRY OF MANIFOLD CURVES

A. Data Model

Consider the following data model with N omnidirectional sensors and M sources:

x(t) = Am(t) + n(t) (1)

where x(t) is the (N×1) vector containing output from all sensors, m(t) is the (M×1) vector containing amplitude
of signals, n(t) is the (N ×1) vector consisting of additive baseband white noise from each sensor and A (N ×M )
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is called the steering matrix.
A = exp(−jrTk) (2)

Position vector matrix (3 × N ), as the name suggests, comprises position vectors of each sensor while assuming
the origin of the coordinate system to be at the centroid of the array. Throughout the report, this assumption is
strictly followed.

rT = [rx, ry, rz] (3)

Wavenumber matrix is represented by the following expression:

k = [k1, k2, ..., kM ] (4)

Each column km of the above matrix is a wavenumber vector pointing towards the DOA of the mth signal.
Wavenumber vector is formally defined as:

km =
2π

λ
[sin(θm) cos(φm), sin(θm) sin(φm), cos(θm)]T m−1 (5)

where λ is the wavelength of the carrier wave of mth signal. However, we can get the following expression by
changing its unit:

km = π[sin(θm) cos(φm), sin(θm) sin(φm), cos(θm)]T (λ/2 m)−1 (6)

To maintain dimensional consistency in equation (2), position vector of the sensors must be taken in a different
unit which is (λ/2) m.

Coordinate system used throughout the report is shown here in Fig. 1.

Fig. 1. Elevation: θ ∈ [0, π] and azimuth: φ ∈ [0, 2π]

B. Array Manifold

Steering matrix defined in previous section has M columns. Each column am of that matrix is called steering
vector corresponding to the mth DOA. Since the number of DOAs are generally finite, there will be finitely many
columns in the steering matrix. In general, steering vector can be found out for any direction (θ, φ). The locus of
steering vector while varying (θ, φ) across every point in the FOV is a geometrical object called array manifold.
Since the dimension of steering vector is N × 1, the manifold will be embedded in an N -dimensional complex
space. In other words, manifold consists of steering vectors corresponding to every possible DOA and therefore,
every time some points (vectors) in the manifold will always correspond to the actual DOA. In DF algorithms, the
main aim is to identify those vectors. The shape of the manifold, whether it is a curve or a surface, depends on
the number of directional parameters involved in the expression for steering vector.
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Steering vector (N × 1) can be mathematically expressed as:

am(θm, φm) = exp{−j(rx sin(θm) cos(φm) + ry sin(θm) sin(φm) + rz cos(θm))} (7)

For any linear array placed on x-axis, FOV is φ ∈ [0, π] which is independent of θ because of front-back ambiguity
(a drawback of linear arrays). For a planar array placed on x-y plane, FOV is φ ∈ [0, 2π], θ ∈ [0, π/2] (again there
is a limitation in FOV due to its planar structure). And for a three-dimensional array, FOV is φ ∈ [0, 2π], θ ∈ [0, π].
(That is, any value of (θ, φ)) is allowed as a DOA.)

From the above it is clear that in the case of linear array, there is only one parameter involved i.e. φ whereas
in the case of planar or three-dimensional array, there are two parameters involved, φ and θ. This means that for
a linear array, there will be only one parameter in the steering vector and its locus will generate a curve which is
called the manifold curve. Similar arguments can be made to conclude that for a two- or three-dimensional array,
manifold will be a surface (known as manifold surface).

Manifold curve is formally defined as:

A , {a(φ) ∈ CN ,∀φ : φ ∈ Ωφ} (8)

where Ωφ is the parameter space or the FOV. There is a need for re-parametrisation of the manifold curve in terms
of a new parameter s, which denotes the arc-length of the curve (see Fig. 2) An appropriate reference point is
chosen which is s = 0, φ = 0.

The expression for arc-length is as follows:

s(φ) ,
∫ s

0
‖ȧ(φ)‖dφ (9)
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Fig. 2.1 Manifold curve A embedded in CN .

Fig. 2.2 Manifold parameterization in terms of arc length s.

The array manifold is conventionally parametrized in terms of a generic

bearing parameter p. For instance for a linear array, p may represent the

azimuth angle θ. However, parametrization in terms of the arc length s (see

Fig. 2.2), which is the most basic feature of a curve and a natural parameter

representing the actual physical length of a segment of the manifold curve in

Fig. 2. Manifold parameterization in terms of arc length s

The benefit of re-parametrisation of a(φ) in terms of s is that s is an invariant parameter and the norm of the
first derivative of a w.r.t. to s is a constant ∀s as shown below:

‖a′(s)‖ =

∣∣∣∣
∣∣∣∣
da(s)

ds

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣
da(φ)/dp

ds/dp

∣∣∣∣
∣∣∣∣ =
‖ȧ(φ)‖
ṡ(φ)

=
ṡ(φ)

ṡ(φ)
= 1 (10)

Parametrisation can be physically understood through following statements. The first derivative of a(φ) can be
thought of as velocity. Then, its norm should signify speed. Also, if φ is considered to be analogous with time,
it can be said that speed is being integrated w.r.t to time to give distance covered, which is nothing here but the
arc-length.
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C. Dimensionality Reduction

Consider the one-dimensional complex plane or the Argand Plane where two complex vectors are required
to span the whole plane or in other words, to represent any complex vector in that space. This statement can
be generalised to an N -dimensional complex space (in case of manifolds) where at most 2N vectors should be
required to represent any vector. The number 2N is called dimensionality. Symmetry is something which can be
exploited to reduce the dimensionality which, in turn, reduces complexity of the analysis. For the case of linear
arrays, reduced dimension d is expressed as follows:

d =

{
2N −m if @ sensor at the array centroid
2N −m− 1 otherwise

(11)

where m is the number of symmetrical pair of sensors plus the one at the centroid (if it exists). Alternatively, it can
be said that dimensionality is the least number of vectors required to represent manifold. Note that the number of
components in steering vector, which is N , cannot be changed. Therefore, the manifold which previously required
2N(N × 1) vectors for its representation now only requires d such vectors.

D. Orthonormal Coordinate System

In R3 a fixed orthonormal coordinate system or a fixed frame is used viz. (̂i, ĵ, k̂). In CN also, a system is
required. The fundamental difference would be that in CN , the frame or the coordinate vector system will not be
fixed, it will change at every point on the manifold curve and hence will be called moving frame. (see Fig. 3) At
s = 0, the matrix containing the coordinate vectors will be denoted by U(0), and at any general point s, it will be
U(s). Following relation can be used to determine coordinate system at any point:

U(s) = U(0)F(s) = [u1(s), u2(s), .., ud(s)] (12)

where F(s) is called Frame Matrix. It is a real orthogonal transformation matrix that involve rotation of U(0) to
produce U(s) at any point s. Clearly F(0) = Id.

July 6, 2004 9:29 WSPC/Book Trim Size for 9in x 6in chap02
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2.2.2 “Moving Frame” and Frame Matrix

In the previous section we have seen that to the running point a(s) on the

curve A we attach a frame of orthonormal vectors u1(s), u2(s), . . . , u2N (s)

together with d − 1 non-zero curvatures κ1(s), . . . , κd−1(s) with N − 1 ≤
d ≤ 2N .

By ignoring the coordinate vectors with indices greater than d (those

corresponding to zero curvatures) a frame of d orthonormal vectors u1(s),

u2(s), . . . , ud(s), can be defined and attached to the running point a(s) on

the manifold curve, making a(s) the “origin” of the new coordinate system.

This set of coordinate vectors, known as a “moving frame” (see Fig. 2.9),

forms the matrix

U(s) = [u1(s), u2(s), . . . , ud(s)] ∈ CN×d (2.9)

and is derived from a fixed known frame U(0), (i.e. at s = 0 say) by rotation,

using the transformation matrix F(s) ∈ Cd×d, i.e.

U(s) = U(0) · F(s) where F(0) = Id (2.10)

The matrix F(s) is a continuous differential real transformation matrix

called frame matrix. This is a non-singular matrix with its main properties

listed in Table 2.1.

Fig. 2.9 “Moving frame” U(0) and U(s).Fig. 3. “Moving frame” U(0) and U(s).

E. Curvatures, Cartan matrix and orthogonality

Fundamental Uniqueness Theorem states that for a d-dimensional curve, a total of d−1 curvatures are sufficient
to uniquely define that curve except its relative position and alignment in space. This leads to the definition of
curvatures. Interestingly, expressions for curvatures are linked with the expressions for coordinate vectors in a
recursive manner as follows:

κi(s) = ‖u′i(s) + κi−1ui−1(s)‖ (13)
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ui(s) =
u′i−1(s) + κi−2ui−2(s)

κi−1
(14)

Some of the initial and final values are listed below for convenience:

κ1(s) = ‖u′1(s)‖ (15)

κ2(s) = ‖u′2(s) + κ1u1(s)‖ (16)

κd(s) = 0 (17)

u1(s) , a′(s) (18)

u2(s) =
u′1(s)
κ1

(19)

ud(s) =
u′d−1(s) + κd−2ud−2(s)

κd−1
(20)

Plot given in Fig. 4 was obtained for ULA with unity inter-sensor spacing. Note that unity inter-sensor spacing
means one half-wavelength distance.
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Fig. 4. Curvatures of ULA as a function of array elements-N

Further, (14) can be modified and rearranged to get:

u′i(s) = κi(s)ui+1(s)− κi−1(s)ui−1(s) (21)

with
u′1(s) = a′′(s) = κ1(s)u2(s) (22)

In a more compact form, we can write
U′(s) = U(s)C(s) (23)
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where C(s) denotes Cartan Matrix. This is an important matrix as it contains information about all d−1 curvatures
which is evident from its expression:

C(s) ,




0 −κ1(s) 0 · · · 0 0
κ1(s) 0 −κ2(s) · · · 0 0

0 κ2(s) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −κd−1(s)
0 0 0 · · · κd−1(s) 0




(24)

Using (12) and (23), it is easy to show that:

F′(s) = F(s)C(s) (25)

or
F(s) = expm(sC(s)) (26)

Strictly speaking, orthogonality is of two types viz. wide sense and narrow sense which is defined for any two
complex vectors of unit magnitude as follows:

”wide” sense Re(uHi (s).uj(s)) = 0 for i 6= j

”narrow” sense uHi (s).uj(s) for i 6= j
(27)

For a general linear array, orthogonality in wide sense holds. Only for the special case of symmetrical array,
orthogonality in narrow sense holds.

F. Significance of rate of change of arc length

For a linear array, (7) can be simplified to write the steering vector as:

a(φ) = exp(−jrx cos(φ)) (28)

The above expression can be easily proved by putting θ = 0. Note that the y and z coordinates of the sensor
position vectors are all zero.

Also, (9) can be used to evaluate s which comes out to be in the following form:

s(φ) = π‖rx‖(1− cos(φ)) (29)

and consequently, following holds true:
ṡ(φ) = π‖rx‖ sin(φ) (30)

ṡ(φ) is interestingly related to resolution. Given 2 closely placed sources at φ1 and φ2, steering vectors corresponding
to both directions can be calculated and if they are situated nearby on the manifold, these two sources are well-
resolved otherwise they are not. This is equivalent to saying that high value of |s(φ1)− s(φ2)| means good resolution
and low value means poor resolution. Thus, ṡ(φ) is one measure of comparing resolutions at different DOAs.

Fig. 5 reveals that in a linear array, resolution is better at broadside position (around φ = 90◦) rather than at
endfire position (around φ = 0o or 180◦). Moreover, increasing the number of sensors improves the resolution
throughout proportionally, which is quite expected. Note that the array cannot resolve sources at endfire positions
due to its cylindrical symmetry.
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Fig. 5. Variation of ṡ(φ) for ULA of 5 and 7 sensors

G. Manifold Length, Uodd and Ueven

Another significant parameter is Manifold Length which is simply the length of the manifold curve or the value
of s(φ = 180◦) which easily comes out to be 2π‖rx‖. Note that in equation (20), if κd−1 becomes equal to zero,
then the expression becomes invalid to compute ud. This situation arises when a sensor is located at the centroid of
the array. In that case, an orthogonalisation procedure is employed to show that the value of ud(s) actually comes
out to be [0, ..., 1, 0, ..., 0]T with the non-zero entry at the same position as that of the sensor at the centroid in rx
vector.

Some other important parameters include Ueven and Uodd which are defined as below:

Uodd = [u1(s), u3(s), ..., udodd(s)] (31)

Ueven = [u2(s), u4(s), ..., udeven(s)] (32)

where
dodd = b((d− 1)/2)c+ 1 (33)

and
deven = b(d/2)c (34)

H. Inclination angle

Another important concept is that of inclination angle ζinc which is defined as the angle formed between manifold
vector a(s) and the subspace L[Ueven(s)]. Mathematically, it can be expressed as:

ζinc = ](a(s),L[Ueven(s)]) (35)

or equivalently,

cos ζinc =

√
1

N
aH(s)PU evena(s) =

√√√√ 1

N

N∑

i=even

aH(s)ui(s) (36)

For the special case of symmetrical linear array, inclination angle is 0◦.
Plot given in Fig. 6 was obtained when the rightmost sensor of a symmetrical linear array was disturbed from its
position.
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Fig. 6. Inclination angle of linear arrays with N = 4 or 6

I. Manifold Radii Vector

Manifold Radii Vector is defined in the following way:

R =





[0,−R2, 0,−R4, 0, ..., 0,−Rd]T
if @ sensor at the array centroid

[0,−R2, 0,−R4, 0, ..., 0,−Rd−1, 1]T

otherwise

(37)

with

R2 =
1

κ1
and Ri =

∏i−2
n=even κn∏i−1
n=odd κn

for i > 2 (38)

An important equation which relates steering vector, coordinate matrix and manifold radii vector is given as follows:

a(s) = U(s)R = U(0)F(s)R where F(s) = expm(sC) (39)

The above expression allows one to write the steering vector in terms of differential geometry parameters. The
expression is quite useful in MUSIC and is also exploited later in the report.

J. MUSIC algorithm using differential geometry

MUSIC (MUltiple SIgnal Classification) is a well-known algorithm which processes data captured from sensors
(x(t)) to determine DOAs of signals. Firstly, noise subspace is estimated. Then the manifold is searched over
for the steering vectors which are (nearly) orthogonal to the estimated noise subspace. Subspace spanned by such
vectors will comprise the signal subspace L[A]. And once signal subspace is determined, sources can be localised.
This whole process is equivalent to taking the intersection of manifold with the subspace orthogonal to the noise
subspace. Directions corresponding to the intersection points on the manifold will correspond to the actual DOA
of signals. It is clear that the accuracy of DOA estimation is dependent upon how accurately the noise subspace is
estimated which, in turn, is dependent upon the SNR and observation interval or the number of snapshots.
Using the model given by (1), theoretical covariance matrix Rxx of array signal vector x(t) can be formed

Rxx , E{x(t)x(t)H} ∈ CNxN (40)

= ARmmAH + σ2IN (41)

The above equations can be easily proved by assuming
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• E{x(t)} = 0 or equivalently, zero mean signal
• Noise to be white Gaussian (zero mean)
• Rmm = E{m(t)m(t)H}.
Practically, only a finite number of snapshots are available, say L. Using that, sample covariance matrix can be

formed as follows:

R̂xx , 1

L

L∑

i=1

x(ti)x(ti)
H =

1

L
XXH (42)

where
X , [x(t1), x(t2), ..., x(tL)] ∈ CNxL (43)

Now, if Pn is taken as projection operator on to the noise subspace (spanned by the noise eigenvectors of the array
covariance matrix), the cost function can be evaluated as follows:

ξMUSIC(s) = aH(s)Pna(s) (44)

The cost function becomes identically equal to zero whenever any steering vector in the manifold becomes
orthogonal to the noise subspace and that particular steering vector will correspond to the actual DOA of the
signal. Note that for multiple signals, there will be multiple such vectors.

To further simplify the expression for cost function in (44), we can use the equation (39) and express the manifold
in terms of differential geometry parameters in the following manner:

ξMUSIC(s) = aH(s)Pna(s)

= RTFT (s)UH(0)PnU(0)F(s)R

= Tr{UH(0)PnU(0)F(s)RRTFT (s)}
= Tr{PnV(s)} (45)

where the matrix Pn , UH(0)PnU(0) is a constant hermitian matrix and termed as the orientation of the noise
subspace. Whereas the matrix V(s) is a real d× d symmetric matrix depending only on the curvatures.

III. DIFFERENTIAL GEOMETRY OF ARRAY MANIFOLD SURFACES

This section predominantly deals with two- and three-dimensional arrays. As stated in the previous section that
for these kind of arrays, the steering vector a(θ, φ) consists of two-parameters namely, φ and θ and the manifold
geometry will be a surface known as array manifold surface which is embedded in an N-dimensional complex
space. It is formally defined as follows:

M = {a(θ, φ) ∈ CN ,∀(θ, φ) : θ, φ ∈ Ω} (46)

where Ω denotes the parameter space. The same way in which the shape of a manifold curve A is uniquely defined
by its curvatures (as explained in previous section), the shape of a manifold surface may be quantitatively expressed
in terms of intrinsic geometrical parameters such as the Gaussian curvature KG(θ, φ) at each point on the surface
(see Fig. 7(a)) and the geodesic curvature κg(θ, φ) of the curves lying on the surface passing through the point
(θ, φ) (see Fig. 7(b)).

In order to find out the above mentioned curvatures, the building blocks of surface differential geometry have to
be defined such as the manifold metric and Christoffel symbols.

A. Manifold Metric

Let a = a(θ, φ) be the regular parametric representation (i.e. partial derivatives w.r.t θ and φ exist, and are unique
and continuous) of a surface M embedded in an N-dimensional complex space.
Then the (2×2) real semipositive definite symmetric matrix G, defined as

G ,
[
||ȧθ||2 Re

{
ȧθ
H ȧφ

}

Re
{
ȧφ

H ȧθ
}

||ȧφ||2
]

=

[
gθθ gθφ
gφθ gφφ

]
(47)

is said to be the manifold metric where ȧθ =
∂a

∂θ
and ȧφ =

∂a

∂φ
. Clearly, det(G) > 0 (by Schwarz’s inequality).
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Fig. 3.1 The Gaussian curvature KG(p, q) provides information about the local shape
of the surface M in the neighbourhood of a(p, q).

Fig. 3.2 The geodesic curvature κg provides information about a curve on a surface.

Definition 3.1 A constant-parameter curve is defined as the curve that

joins all those points on the manifold surfaceM corresponding to a constant

value of one of the two parameters p, q.

(a) Gaussian Curvature
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Fig. 3.1 The Gaussian curvature KG(p, q) provides information about the local shape

of the surface M in the neighbourhood of a(p, q).

Fig. 3.2 The geodesic curvature κg provides information about a curve on a surface.

Definition 3.1 A constant-parameter curve is defined as the curve that

joins all those points on the manifold surfaceM corresponding to a constant

value of one of the two parameters p, q.

(b) Geodesic Curvature

Fig. 7. Intrinsic properties of a surface

B. Christoffel Symbol Matrices

The Christoffel symbols of first kind represent the inner products between the tangent vectors ȧθ,ȧφ and their
derivatives, and are defined as

Γi,jk , Re
{
ȧi
H äjk

}
with i, j, k = θ or φ (48)

Thus there are eight Christoffel symbols of first kind forming the two Christoffel matrices of the first kind Γ1θ and
Γ1φ defined as follows:

Γ1ζ ,
[

Γθ,θζ Γθ,φζ
Γφ,θζ Γφ,φζ

]
with ζ = θ or φ (49)

Christoffel symbol matrices of second kind are defined as follows:

Γ2ζ , G−1Γ1ζ =

[
Γθθζ Γθφζ
Γφθζ Γφφζ

]
with ζ = θ or φ (50)

C. Intrinsic Geometry of a Surface

A property of a surface which remains invariant under an isometry (distance preserving map between metric
spaces) is called an intrinsic property of the surface. The intrinsic geometry of a surface is completely independent
of the space in which the surface lies and is built simply from the properties that are isometric invariant. Following
are the two important features of intrinsic geometry.

1) Gaussian Curvature: The Gaussian curvature can be expressed as a function of the metric G and in terms
of the Christoffel matrices elements as follows:

KG(θ, φ) = − 1√
det(G)



∂

(√
det(G)

gθθ
Γφθφ

)

∂θ
−
∂

(√
det(G)

gθθ
Γφθθ

)

∂φ


 (51)

The sign of the Gaussian Curvature gives a hint of the local shape of the surface in the neighbourhood of point
(θ, φ). For instance, the surface around a point (θ, φ) is locally:
• elliptic, if KG(θ, φ) > 0 (the whole neighborhood of the surface at the point considered lies on one side of

the tangent hyperplane; e.g, a spherical shape),
• hyperbolic, if KG(θ, φ) < 0 (one part of the surface at the point considered lies on one side of the tangent

hyperplane and the other part on the other side; e.g, a saddle shape ),
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• either parabolic or planar (i.e flat), if KG(θ, φ) = 0 (there is a straight line of the surface, lying totally on the
tangent space; e.g., a cylindrical or planar shape).

If the Gaussian curvature at a point on the manifold is a positive number, the local neighborhood of that point
is equivalent to the local neighborhood of a point on a sphere of radius

√
1/KG.

2) Geodesic Curvature: The general expression for the geodesic curvature κg of an arbitrary curve on a surface
is rather involved but can be considerably simplified for the special case of constant-parameter curves. Let us denote
a “θ-parameter curve” (or simply θ-curve) on the surface M corresponding to a constant value of φ = φo as

Aθ|φo = {a(θ, φo) ∈ CN ,∀θ : θ ∈ Ωθ, φo = constant} (52)

and, in a similar way, a “φ-parameter curve” (or simply φ-curve) as

Aφ|θo = {a(θo, φ) ∈ CN ,∀φ : φ ∈ Ωφ, θo = constant} (53)

Different values of φo(or θo, accordingly) generate a family of curves having the same properties covering the
entire manifold surface M. Thus, there are two such families of curves providing two alternative ways of treating
the manifold surface. These are
• the family of θ-parameter curves

M = {Aθ|φo , ∀φo : φo ∈ Ωφ} (54)

• the family of φ-parameter curves
M = {Aφ|θo ,∀θo : θo ∈ Ωθ} (55)

Both families of θ- and φ-curves can be used to interpret the manifold surface M but different parameterization
of the surface provide families of curves with different properties.

Now, the geodesic curvature of θ- and φ-curves can be defined as follows:

κg,θ , κg(θ, φo) =

√
det(G)

g3θθ
Γφoθθ κg,φ , κg(θo, φ) = −

√
det(G)

g3φφ
Γθoφφ (56)

The Concept of Geodicity: It is known that the curve with the minimum length between two points in an Euclidean
space is a straight line. This concept when extended to a curve connecting two points on a surface, the curve of
minimum length belonging to that surface is called a geodesic curve. If the geodesic curvature of a curve is zero
at every point along its length, then it is a geodesic curve and the converse is also true. In short

geodesic curve⇔ a curve with κg = 0 (57)

IV. NON-LINEAR ARRAYS: MANIFOLD PARAMETERS

The manifold vector of an array of N omnidirectional sensors of arbitrary geometry is

a(θ, φ) = exp(−jrTk(θ, φ)) where (θ, φ) ∈ Ω (58)

where Ω (parameter space) is the field of view (FOV) of the array of sensors.

A. 3D-grid Arrays of Omnidirectional Sensors

A three-dimensional array geometry of omnidirectional sensors is said to be a 3D-grid array if and only if the
following expression is satisfied:

rrT = ρ2I3 where ρ ∈ R (59)

This implies that in 3D-grid arrays the vectors rx, ry and rz are orthogonal and also have the same magnitude.
Table I compiles the results of the array manifold parameters for 3D-grid arrays. Based on the results presented

in the table, the following comments can be made:
• the Gaussian curvature KG is always positive and constant. This implies that the manifold surface of a 3D-grid

array of N omnidirectional sensors is spherical with radius πρ embedded in an N -dimensional complex space
• the geodesic curvature of the θ-curve (κg,θ) is zero which implies that the θ-curve is a geodesic curve
• the off-diagonal elements of the manifold metric G (i.e. gθφ, gφθ) are zero and hence the θ- and φ-curves are

orthogonal.



SUMMER PROJECT REPORT 14

TABLE I
MANIFOLD PARAMETERS OF 3D-GRID ARRAYS.

Intrinsic Parameter Expression

G ρ2π2

[
1 0
0 sin2 θ

]

det(G) ρ4π4 sin2 θ

Γ1θ ρ2π2 cos θ sin θ

[
0 0
0 1

]

Γ1φ ρ2π2 cos θ sin θ

[
0 −1
1 0

]

Γ2θ

[
0 0
0 cot θ

]

Γ2φ

[
0 − cos θ sin θ

cot θ 0

]

KG
1

ρ2π2

κg,θ 0

κg,φ
cot θo
ρπ

B. Development of manifold surfaces

“Development” is a technique of realising a surface embedded in higher dimension like in CN on to a lower
dimension space like R2. It is a local geodesic mapping in which the higher dimensional surface is mapped to
R2 curve-by-curve. Since the manifold surface can be seen as collection of θ-curves or φ-curves, the technique of
“development” can be used to “develop” one of the family of curves mentioned above.

In Fig. 8, a curve (expressed in terms of a parameter t) has been mapped to R2 using “development”. Note that
the curvature of the developed curve κd(t) equals the geodesic curvature κg(t) of the original curve for all t. The
motivation behind the conservation of the geodesic curvatures is to maintain the behaviour that the shortest path
between two points on the surface maps to a straight line on the plane.
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Fig. 3.3 The concept of “development.”

with curvature κd(t) and arc length sd(t) given by

κd(t) = κg(t) and sd(t) =

∫

t

κ−1
d (t) dt (3.46)

where

κg(t) � κg((p(t), q(t))) = geodesic curvature of At

Thus, the curvature κd(t) of the development of a manifold

curve A
t is the geodesic curvature of that curve. The motivation

behind the conservation of the geodesic curvatures is to maintain the char-

acteristic that the shortest path between two points on the surface maps

to a straight line on the plane (i.e. the shortest path on the development),

otherwise the development will represent a “distorted” surface.

The relation between the Gaussian curvature and the “development”

is addressed by Beltrami’s theorem [20, 21]. This theorem states that if a

Fig. 8. The concept of “development”.
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The image of a point (θ, φ) lying on the manifold surface, on the real parameter plane for a 3D-grid array
simplifies to the following expression:

D(θ, φ) = ρπ tan θo

[
sinφ
− cosφ

]
(60)

The locus of the images D(θ, φ)∀(θ, φ) is called the development of the manifold and has the following properties:
• It exists if and only if the Gaussian curvature of the manifold surface is constant (which is true for a 3D-grid

array).
• The curvature of the φ-curves on the development is equal to the geodesic curvature κg,φ(θo, φ) of the φ-curves

on the manifold surface.
• For a 3D-grid array (see Fig. 9),

- the development of φ-curves are circular implying constant geodesic curvature of φ-curves
- the development of θ-curves (which are geodesic curves on the surface) are straight lines.
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Fig. 4.6 θ-curves and φ-curves development of the manifold of a 3D-grid array with
sensors located on the eight vertices of a cube of side one half-wavelength and with
reference point the centre of the cube (array centroid).

have an ellipsoidal shape with the two main axes at angles ψ0 and ψ0+π/2

with respect to the x-axis where:

ψ0 =
1

2
tan−1

(
2c2

c1 − c3

)
(4.32)

with ci denoting the elements of the matrix L, i.e. L =
[
c1, c2
c2, c3

]
. Indeed the

angle ψ0 can be found by examining the points of extremum curvatures.

Since the curvature of the development is equal to κgθ, the geodesic cur-

vature of the θ-curves of the planar array manifold is differentiated with

respect to θ and equated to zero:

dκgθ

dθ
= 0 (4.33)

⇔ d(c3 cos
2 ψ0 − 2c2 cosψ0 sinψ0 + c1 sin

2 ψ0)
−3/2

dψ0
= 0

Fig. 9. θ-curves and φ-curves development of the manifold of a 3D-grid array with sensors located on the eight vertices of a cube of side
one half-wavelength and with reference point the centre of the cube (array centroid).

V. ARRAY BOUNDS

A. Circular approximation of manifold curves

Visualisation of a curve with dimensionality greater than three is impossible. One intuitive way of doing that
is circular approximation which states that for a sufficiently small neighbourhood of a point s̆ on a curve in an
N -dimensional space (where the coordinate vectors are strictly orthogonal) can be approximated by a circular arc.
This circular arc provides an informative notion of the curve’s shape in the neighbourhood of point s̆ and lie on
the plane:

H12 , L([u1(s̆), u2(s̆)]) (61)

with the vector u1(s̆) as its tangent and radius R = κ−11 . The approximation also provides a 2D representation
with the curve having main components along the first two coordinate vectors u1(s̆) and u2(s̆) (see Fig. 10). Note
that the coordinate vectors u1(s̆) and u2(s̆) are not, in general, strictly orthogonal. Therefore, the radius of circular
approximation is κ̂−11 (s̆) which accounts the ”orientation” of the manifold curve A by the following expression:

κ̂1 = κ1 sin(ζ) (62)
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Thus, Eq. (8.7) provides the following condition

∆si ≤
2κ1

‖r̃3 − κ2
1r̃‖

TOL (8.9)

under which Eq. (8.6) is simplified to

u1(s̆±∆si) �
(
1− (∆si)

2

2
κ2
1

)
u1(s̆)±∆siκ1u2(s̆) (8.10)

matching Eq. (8.2) for R = κ−1
1 .

The above indicates that a circular arc can be adopted as an excellent

approximation to the array manifold in the region of interest neighboring

s̆. This approximation also provides a 2D representation where, at a local

level, a curve has its main components along the first two coordinate vectors

at point s̆, as illustrated in Fig. 8.1, and has not yet had the opportunity

to “move into” higher dimensions (subspace L{[u3, u4, . . . , ud]}).
Note that by writing the incremental arc length as ∆si ≈ ṡ(p̆)∆pi and

recalling that ṡ(p) = π‖r‖ sin p, the condition of Eq. (8.9) provides an upper

limit to the angular separation ∆pi for which the above approximation is

Fig. 8.1 H12 subspace used to approximate the array manifold at a local level.Fig. 10. H12 subspace used to approximate the array manifold at a local level

where ζ is the angle between u1(s̆) and u2(s̆). Also,

sin(ζ) =
√

1− |uH1 (s)u2(s)|2 (63)

For linear arrays, the value of coordinate vectors can be calculated and substituted to arrive at the following result:

κ̂1 =
√
κ21 − |1TN r̃3|2 with r̃ = r/‖r‖ (64)

B. Cramer Rao Lower Bound (CRLB)

CRB sets a lower bound on the error covariance matrix of any unbiased estimate, p̂, of the true parameter vector
p ∈ RM in the signal model of (1).

For the case of an array of N sensors receiving M narrowband signals with additive sensor noise of power σ2,
and for a sufficiently large number of snapshots (L >> 1), the expression for the deterministic CRB has been
shown to be as follows:

CRB[p] =
σ2

2L
(Re(H� RTm))−1 ∈ RM×M (65)

where

H = ȦHP⊥A Ȧ ∈ CM×M

RTm = E{m(t)m(t)H} ∈ CM×M (source covariance matrix)
(66)

with

A = [a1,a2, ...,aM ]

Ȧ = [ȧ1, ȧ2, ..., ȧM ]

P⊥A = IN − A(AHA−1)AH
(67)

Following assumptions have been made:
• N > M and the manifold vectors are independent
• Noise is zero mean, temporally white Gaussian process
• E{n(t)nH(t)} = σ2IN
• Parameters other than p are known a priori
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C. Single emitter CRB

For an array receiving signal from a single source, its power can be expressed as:

P = E{m(t)m∗(t)} (68)

Using (65), CRB for the bearing p can be expressed as:

CRB[p] =
σ2

2LP

1

ȧH(p)P⊥a ȧ(p)
(69)

Using
ȧ(p) = u1(s)ṡ(p) and ‖u1(s)‖ = 1 (70)

Also, from (18), it is clear that u1(s) is orthogonal to a(p) and therefore, P⊥a u1(s) = u1(s). Thus, (69) can be
simplified as follows:

CRB[p] =
σ2

2LP ṡ(p)2
1

uH1 (s)P⊥a u1(s)
=

σ2

2LP ṡ(p)2
=

1

2(SNR× L)ṡ(p)2
where SNR = P/σ2 (71)

TABLE II
RATE OF CHANGE OF ARC-LENGTH FOR LINEAR AND PLANAR ARRAYS

Array Curve A Rate of change of arc-length s Parameter p

Linear A ṡ(φ) = π‖rx‖ sinφ p = φ

Planar (φ, θ) Aθ|φo ṡ(θ) = π‖r(φo)‖ cos θ p = θ

Aφ|θo ṡ(φ) = π‖ṙ(φ)‖ sin θo p = φ

For a linear array, there is only one parameter which is azimuth. Hence, there can be only one CRB value known
as azimuthal CRB which was plotted for a symmetrical linear array with r = [-2.5; -1.5; -0.5; 0.5; 1.5; 2.5] (See Fig.
11). As can be noted, linear arrays faces difficulty in resolving signals arriving from endfire positions.
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Fig. 11. Azimuthal CRB for a symmetrical linear array

As stated before, in the case of two- and three-dimensional arrays, there are two parameters involved in the
steering vector and hence, for each point (θ, φ) in the FOV, there will be two values of CRB involved and hence
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two surface plots for azimuth and elevation covering the whole FOV will be required which will be called as
azimuthal CRB and elevation CRB plots respectively.

For a UCA with 24 sensors (centroid at origin), its azimuthal and elevation CRB plots for single source are
shown in Fig. 12.
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(b) Azimuthal CRB

Fig. 12. CRB plots for elevation and azimuthal CRB for a 24-sensor UCA

It is clear from Fig. 12 that error in estimating elevation (or equivalently, elevation CRB) is high when elevation
is 90◦. Similarly, the error in estimating azimuth is high when elevation around 0◦. And, as expected, the above
observations are independent of azimuth.

D. Two emitter CRB

CRB for a two emitter scenario is different from the case of a single emitter. CRB for calculating the DOA of
signal from first source will be affected by the presence of the other source. Consequently, the CRB plots for any
of the sources will not be independent unless they are sufficiently apart.

For two independent sources, expression for CRB is given by:

CRB[p1|A] =
1

2(SNR1 × L)

1

ȧH1 P⊥A ȧ1

(72)

(72) can be simplified by using ȧ(p1) = u1(s1)ṗ1 to get,

CRB[p1|A] =
1

2(SNR1 × L)

1

ṡ(p1)2uH1 (s1)P⊥Au1(s1)
(73)

Fig. 13 shows the azimuthal CRB for the same linear array of previous section. In this particular figure, azimuth
for one source has been arbitrarily fixed at 60◦ and the CRB for estimating the azimuth of other source has been
plotted while varying it over a range of 0◦ − 20◦. It can be clearly seen that when the sources are kept near, the
value of azimuthal CRB of either of them is quite high irrespective of their azimuth, which is expected.

E. Detection and resolution thresholds

“Detection” capability of an array is given by its ability to identify the number of sources, M while “resolution”
means estimating the DOAs of the detected signals. There can be situations when array can tell the number of
sources but not their precise locations. To further develop the theory, detection and resolution subspaces have been
defined which will be useful later:

detection: Hdet , L([a(s̆),PAa(s̆)]) (74)

resolution: Hres , L([a(s̆), u1(s̆)]) (75)
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Fig. 13. Azimuthal CRB for one fixed source while moving the other
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Fig. 8.7 Detection threshold subspace — an illustrative visualization.

Fig. 8.8 Resolution threshold subspace — an illustrative visualization.

Definition 8.1 Detection Threshold: Two sources are detected if and

only if the uncertainty spheres do not make contact. The threshold of detec-

tion occurs when the two uncertainty spheres just make contact.

The two sources remain undetectable if their associated uncertainty

spheres overlap. This implies that the arc length separation ∆s = |s2 − s1|
between two points s1 and s2 associated with two sources should be greater

(a) Detection subspace
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Fig. 8.7 Detection threshold subspace — an illustrative visualization.

Fig. 8.8 Resolution threshold subspace — an illustrative visualization.

Definition 8.1 Detection Threshold: Two sources are detected if and

only if the uncertainty spheres do not make contact. The threshold of detec-

tion occurs when the two uncertainty spheres just make contact.

The two sources remain undetectable if their associated uncertainty

spheres overlap. This implies that the arc length separation ∆s = |s2 − s1|
between two points s1 and s2 associated with two sources should be greater

(b) Resolution subspace

Fig. 14. Depiction of detection and resolution subspace

where PA = A(AHA)−1AH and A = [a(s1),a(s2)]. For convenience, the detection and resolution subspace are
shown in Fig. 14.

From a practical view point, any manifold vector a(s) on a manifold curve should not be represented by just
a point but a sphere. (known as uncertainty sphere) The RMS value σei of the uncertainty due to noise which
remains in the system after L snapshots can be represented as an N -dimensional hypersphere of radius σei centred
at the manifold vector a(si).

F. Estimating detection threshold

Two sources are detected if and only if their uncertainty spheres do not make contact. And the threshold occurs
when they just touch each other.

∆s > ∆sdet-thr (76)

From Fig. 15, it is clear that

∆sdet-thr = κ̂−11 ∆ψ =
arcsin(κ̂1σe1,d) + arcsin(κ̂1σe2,d)

κ̂1
(77)
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Following expressions for the radius of uncertainty spheres can be used:
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Fig. 8.9 An illustrative representation of the geometry at “detection threshold” on the
H12 subspace (circular approximation).

than, or equal to, ∆sdet-thr in order to be detected. That is

∆s � ∆sdet-thr (8.55)

Based on this definition and once again using the circular approxima-

tion/representation of the array manifold, the scenario of Fig. 8.2, at the

detection threshold, pertains:

µy1
= σe1,d and µy2

= σe2,d (8.56)

as shown in Fig. 8.9. Hence Eq. (8.21) becomes

∆sdet-thr = κ̂−1
1 ∆ψ

=

�∆ψ1︷ ︸︸ ︷
arcsin(κ̂1σe1,d) +

�∆ψ2︷ ︸︸ ︷
arcsin(κ̂1σe2,d)

κ̂1
(8.57)

Noting that arcsin(x) � x for x � 1, one may write

∆ψ1 = arcsin(κ̂1σe1,d) � κ̂1σe1,d (8.58)

∆ψ2 = arcsin(κ̂1σe2,d) � κ̂1σe2,d (8.59)

Fig. 15. Geometry at detection subspace

σei,d = ‖P⊥Hdet
a(si)‖ = aH(si)P⊥Hdet

a(si) for i = 1, 2 (78)

Thus, the minimum arc-length and angular separation for detection is given the following two expressions (for
linear arrays):

∆sdet-thr = σe1,d + σe2,d (79)

∆φdet-thr =
1

π‖r‖ sin φ̆
(σe1,d + σe2,d) (80)

G. Estimating resolution threshold

Two sources are resolved if their uncertainty spheres do not make contact with the resolution subspace and the
threshold occurs when the Hres is a tangent plane to the uncertainty spheres. Therefore,

∆s > ∆sres-thr (81)

Once again radius of uncertainty spheres have to be defined:

σei,r = ‖P⊥Hres
a(si)‖ for i = 1, 2 (82)

Using Fig. 16 it can be written that,

∆sres-thr = ∆s1 + ∆s2 = κ̂−11 ∆ψ =

(
arccos

(
1− κ̂1

σe1,r
sinγ

)
+ arccos

(
1− κ̂1

σe2,r
sinγ

))

κ̂1
(83)

Upon simplification, it is easy to show that for a linear array,

∆sres-thr = 4

√
4

κ̂21 − 1
N

(
√
σe1,r +

√
σe2,r) (84)

and,

∆φres-thr =
1

π‖r‖ sin φ̆
4

√
4

κ̂21 − 1
N

(
√
σe1,r +

√
σe2,r) (85)
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Fig. 8.10 View of the H12 subspace (plane): an illustrative representation of the geom-
etry at “resolution threshold” on the H12 subspace (circular approximation).

at the point s̆. Once again using the circular representation of the array

manifold the situation of Definition 8.2 may be illustrated as in Figs. 8.10

and 8.11. With reference to these two figures, it can be seen that σe2,r (see

Fig. 8.11) and µx2 (see Fig. 8.10) as well as σe1,r and µx1
may be given as

follows:

σe1,r = ‖P⊥
Hres

a(s1)‖ and σe2,r = ‖P⊥
Hres

a(s2)‖ (8.64)

µx1 =
σe1,r

sin γ
and µx2

=
σe2,r

sin γ
(8.65)

Hence Eq. (8.21) becomes

∆sres-thr = ∆s1 +∆s2 = κ̂−1
1 ∆ψ

=

�∆ψ1︷ ︸︸ ︷
arccos

(
1− κ̂1

σe1,r

sin γ

)
+

�∆ψ2︷ ︸︸ ︷
arccos

(
1− κ̂1

σe2,r

sin γ

)

κ̂1
(8.66)

Fig. 16. Geometry at resolution subspace

H. Uncertainty sphere model

Uncertainty sphere represents uncertainty of a steering vector due to noise present in the system. It is possible
to reduce noise in the system through two ways:
• High SNR
• High number of snapshots L

That is
σ2e ∝

1

L
and σ2e ∝

1

SNR
(86)

Also, if the efficiency of the DF algorithm is accounted by a term C, it becomes possible to write

σe =

√
1

2(SNR× L)C
(87)

Using (87) and taking C = 1, the expressions for detection and resolution threshold can be simplified as follows:
• Detection threshold:

∆sdet-thr =
1√

2(SNR1 × L)

(
1 +

√
P1

P2

)
(88)

• Resolution threshold:

∆sres-thr = 4

√
2

(SNR1 × L)
(
κ̂21 − 1

N

)
(

1 + 4

√
P1

P2

)
(89)

By using ∆s = ṡ(φ̆)∆φ and table II, angular thresholds can be found out for linear and planar arrays.
For instance, for linear arrays, detection and resolution thresholds for azimuth can be written as:

∆φdet-thr =
1

π‖r‖ sin φ̆
√

2(SNR1 × L)

(
1 +

√
P1

P2

)
(90)

and

∆φres-thr =
1

π‖r‖ sin φ̆
4

√
2

(SNR1 × L)
(
κ̂21 − 1

N

)
(

1 + 4

√
P1

P2

)
(91)

where φ2 = φ1 + ∆φ and φ̆ = (φ1 + φ2)/2.
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It is to be noted that,
∆φres-thr

∆φdet-thr
=

√
8

κ̂21 − 1
N

4
√

SNR× L � 1 (92)

which reveals that resolution is a more demanding operation. Therefore, if sources are resolved, then usually it
means they are detected as well, which is expected.

One interesting thing to note here is that given ∆s, it is possible to estimate the number of snapshots required
to detect or resolve sources through following expression:

Ldet-thr =
1

2∆s2

(
1√

SNR1
+

1√
SNR2

)2

(93)

and

Lres-thr =
2

∆s4
(
κ̂21 − 1

N

)
(

1
4
√

SNR1
+

1
4
√

SNR2

)4

(94)

VI. SPHERICAL HARMONICS DOMAIN (SHD)

The analysis that has been done till now is done in spatial domain, that is the system model considered was in
spatial domain and hence the manifold vector and all its differential geometry properties and parameters along with
MUSIC was for spatial domain. By using Spherical Fourier Transform a new data model can be developed in SHD
resulting in a new manifold vector whose differential geometry properties are independent of the array geometry.
The next three sections will deal with the system model and MUSIC in SHD followed by the differential geometry
of the manifold vector in SHD and a modified MUSIC algorithm based on differential geometry parameters of the
manifold.

A. Signal Processing in Spherical Harmonics Domain

The data model used in (1) is a general data model valid for any type of signal. Now, the main focus will be on
pressure waves/sound and the existing data model will be modified accordingly.

A narrow-band sound field of L far field sources with wavenumber k, is incident on a spherical array of I
microphones of radius r. Let Φi ≡ (θi, φi) denote the angular location of the ith microphone Ψl = (θl, φl) denote
the direction of arrival of the lth source. The spatial data model in frequency domain of the sound pressure,

p(k) = [p
1
(k), p

2
(k), ...., p

I
(k)]T (95)

can be written as
p(k) = V(k)s(k) + n(k) (96)

Here, V(k) is I×L steering/manifold matrix (same as (2)), s(k) is L×1 vector of signal amplitudes, n(k) is I×1
vector of zero mean, uncorrelated sensor noise. The steering matrix V(k) is expressed as

V(k) = [v1(k), v2(k), ...., vL(k)] where vl(k) = [e−jk
T
l r1 , e−jk

T
l r2 , . . . , e−jk

T
l rI ]T (97)

The ith term in (97) refers to pressure due to lth unit amplitude plane wave with wave vector kl at location ri.
This may alternatively be written as

e−jk
T
l ri =

∞∑

n=0

n∑

m=−n
bn(kr)Y m

n
∗(Ψl)Y

m
n (Φi) (98)

where bn(kr) is called mode strength. The far-field mode strength bn(kr) is given by

bn(kr) = 4πjnjn(kr), for open sphere (99)

= 4πjn
(
jn(kr)− j′n(kr)

h′n(kr)

)
, for rigid sphere (100)

where jn(kr) is spherical Bessel function, hn(kr) is nth order spherical Hankel function of second kind and ′

refers to first derivative. (see Fig. 17(a) and 17(b))
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Fig. 17. Mode amplitude bn as a function of kr and n.

In case of a rigid sphere, the mode strength bn decreases significantly for order greater than kr. Hence, the
summation in (98) can be truncated to finite η, called the array order.

The spherical harmonic of order n and degree m, is given by

Y m
n (θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pmn (cos θ)ejmφ ∀ 0 ≤ n ≤ η,−n ≤ m ≤ n (101)

Y m
n are solution to the Helmholtz equation and Pmn are associated Legendre functions. The spherical harmonics are

used for spherical harmonics decomposition of a square integrable function, similar to complex exponential ejωt

used for decomposition of real periodic functions.
Substituting (98) in (97), the expression for steering matrix can be written as

V(Ψ) = Y(Φ)B(kr)YH(Ψ) (102)
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where Y(Φ) is I × (η + 1)2 matrix whose ith row is given as

y(Φi) = [Y 0
0 (Φi), Y

−1
1 (Φi), Y

0
1 (Φi), Y

1
1 (Φi), . . . , Y

η
η (Φi)]. (103)

The L× (η + 1)2 matrix Y(Ψ) can be expanded on similar lines. The (η + 1)2 × (N + 1)2 matrix B(kr) is given
by

B(kr) = diag(b0(kr), b1(kr), b1(kr), b1(kr), . . . , bη(kr)). (104)

Having introduced the spherical harmonics, the Spherical Fourier Transform (SFT) of the received pressure
p(k, r,Φ), is given by

pnm(k, r) =

∫ 2π

0

∫ π

0
p(k, r,Φ)Y m

n
∗(Φ) sin(θ)dθdφ

∼=
I∑

i=1

aipi(k, r,Φi)Y
m
n
∗(Φi) ∀ 0 ≤ n ≤ η,−n ≤ m ≤ n (105)

The spatial sampling of pressure over a spherical microphone array is captured using sampling weights, ai. The
Inverse Spherical Fourier Transform (ISFT) is expressed as

p(k, r,Φ) ∼=
η∑

n=0

n∑

m=−n
pnm(k, r)Y m

n (Φi) (106)

In matrix form, (105) is written as
p
nm

(k, r) = YH(Φ)Γp(k, r,Φ) (107)

where p
nm

(k, r) = [p00, p1(−1), p10, p11, . . . , pηη]T and Γ = diag(a1, a2, · · · , aI). Also, under the assumption of
(105), the following orthogonality property of spherical harmonics holds:

YH(Φ)ΓY(Φ) = I(η+1)2 (108)

where I(η+1)2 is (η + 1)2 × (η + 1)2 identity matrix.
Substituting (102) in (96), then multiplying both side with YH(Φ)Γ and utilizing relations (107),(108), we have

the following data model in spherical harmonics domain:

p
nm

(k, r) = B(kr)YH(Ψ)s(k) + nnm(k) (109)

Multiplying both side of (109) by B−1(kr), the final spherical harmonics model can be re-written as

anm(k, r) = YH(Ψ)s(k) + znm(k) (110)

[anm](η+1)2×1 = [YH ](η+1)2×L [s]L×1 + [znm](η+1)2×1 (111)

where anm(k, r) = B−1(kr)p
nm

(k, r), (112)

znm(k) = B−1(kr)nnm(k) = ξn(k), (113)

ξ = B−1(kr)YH(Φ)Γ (114)

It must be noted that ξ is constant for a given array geometry.
The final data model (110) resembles the very first data model (1) but with some major differences. First, the

dimensionality of the vectors has changed from N (number of sensors) to (η + 1)2 where η is the array order.
Second, the new steering vector yH(ψ) is independent of array geometry as it does not contain any term related
to the microphone positions (see (103)).

From (103), the SHD steering/manifold vector is written as

yH(θ, φ) = [Y 0
0 (θ, φ), Y −11 (θ, φ), Y 0

1 (θ, φ), Y 1
1 (θ, φ), . . . , Y η

η (θ, φ)]H ∈ C(η+1)2 (115)
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B. Differential Geometry of SHD Manifold

The SHD manifold will be a surface embedded in (η + 1)2 dimensional complex space and is formally defined
as:

MSH = {yH(θ, φ) ∈ C(η+1)2 , ∀(θ, φ) : (θ, φ) ∈ Ω} (116)

where, Ω is the field of view of the microphone array and η is the order limitation.
The SHD manifold can be analyzed for various differential geometry properties using the techniques presented

in Section III. The following results have been derived for the SHD manifold surface:
• The surface differential parameters have the form same as that of 3D-grid arrays with

ρπ ↔ 1

4
√
π

(η + 1)
√
η(η + 2) (117)

that is, if ρπ in Table I is replaced by the above expression then the differential geometry parameters for SHD
manifoldMSH will be obtained. Conversely, for a given order η a 3D grid array can be found with the above
ρ whose microphone positions satisfy (59). (see Appendix A for proof).

• It is known from Unsöld’s theorem

Sn =

n∑

m=−n
Y m
n
∗(θ, φ)Y m

n (θ, φ) =
2n+ 1

4π
where n ∈ Z (118)

which implies that

||yH(θ, φ)||2 =

η∑

n=0

Sn =
(η + 1)2

4π
(119)

For a fixed order η, the norm of the manifold vector is constant (independent of θ and φ). This means that

the manifold lies on a complex (η + 1)2 dimensional sphere with radius
(η + 1)

2
√
π

.

• The Gaussian curvature of the manifold is also constant for a fixed η (see (117) and Table I). This means that
the manifold surface is spherical with radius 1

4
√
π

(η + 1)
√
η(η + 2). In other words, the manifold surface is

a d dimensional complex sphere lying on a higher dimensional complex sphere.

As in (52) and (53) we can define θ-curve for the SHD manifold as

ASHθ|φo = {yH(θ, φo) ∈ C(η+1)2 ,∀θ : θ ∈ Ωθ, φo = constant} (120)

and φ-curve for the SHD manifold as

ASHφ|θo = {yH(θo, φ) ∈ C(η+1)2 ,∀φ : φ ∈ Ωφ, θo = constant} (121)

and hence treat the manifold surface either as a family of θ-curves or φ-curves.
It can be easily seen that the differentiation of the manifold vector w.r.t φ is much more easier than w.r.t θ

(calculating higher order derivatives exponential is very cheap while the same for associated Legendre polynomial
is a bit involved). Hence the family of φ curves will be considered for further analysis.

The φ-curve of SHD manifold can be analyzed for various manifold curve parameters like curvatures, moving
frame Cartan matrix, etc. using the procedures presented in Section II. The following results have been derived for
the φ curve (see Appendix B)
• The dimensionality d of the curve is given by

d = 3η + 1 (122)

which means that the φ-curve is situated wholly in some subspace of dimensionality d.
• The arc length of the curve expressed in terms of φ is given by

sφ(φ) =

(
1

4
√
π

(η + 1)
√
η(η + 2) sin θo

)
φ (123)

Clearly, arc length varies linearly with φ.
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• The moving frame matrix U(s) is a (η+1)2×d matrix whose first 2η columns are given by using the recursive
formula of ui(s) and κi(s) (13),(14). The rest of the column vectors u2η+1(s), u2η+2(s), ...., u3η+1(s) are
calculated using an orthogonalization procedure and can be shown to be given by

ui(s) = [0, ..., 0, 1, 0, ..., 0]T (124)

where the non-zero entry is at the position where the degree m of the spherical harmonics Y m
n (θ, φ) is zero

in the manifold vector yH(θ, φ).
• The first 2η curvatures are obtained from the calculations of the moving frame matrix. The first 2η−1 curvatures

are non-zero and constant (independent of θ and φ) and the remaining curvatures κ2η, κ2η+1, ...., κ3η+1 are all
zero. (If a curvature is zero ∀(θ, φ), then all higher order curvatures will be zero)

• The first 2η elements of the radii vector (d×1) are calculated using (38) and the remaining ones are Y m
n (θ, φ)

evaluated at m = 0 and n = 0, 1, ...., η i.e

R = [0,−R2, 0,−R4, 0, ..., 0,−R2η, Y
0
0 (θ, φ), Y 0

1 (θ, φ), ...., Y 0
η (θ, φ)]T (125)

The rest of the parameters are evaluated directly using (24),(26),(36). After calculating all the parameters of the
φ-curve, the manifold vector yH(θ, φ) can be expressed in terms of differential geometry parameters as follows:

yH(θ, φ) = U(s)R = U(0)F(s)R where F(s) = expm(sC) (126)

C. Detection and Resolution Thresholds

The expressions for detection and resolution thresholds for the arc length on a manifold curve has been already
specified in (88) and (89). Also from (123), the rate of change of arc length of the φ-curve of the SHD manifold
is given by

ṡφ(φ) =
1

4
√
π

(η + 1)
√
η(η + 2) sin θo (127)

Thus, the expressions for the detection and resolution thresholds for the angular separation can be found out and
is given by

∆φdet-thr =
4
√
π

(η + 1)
√
η(η + 2) sin θo

√
2(SNR1 × L)

(
1 +

√
P1

P2

)
(128)

and

∆φres-thr =
4
√
π

(η + 1)
√
η(η + 2) sin θo

4

√√√√ 2

(SNR1 × L)
(
κ21 − 1

(η+1)2

)
(

1 + 4

√
P1

P2

)
(129)

From the above two expressions, it can be seen that the threshold values are minimum at the equator (θo = 90◦)
and maximum at the poles (θo = 0◦, 180◦). This means that the resolving power of a spherical array for two sources
placed at the same elevation/latitude is highest at the equator and lowest at the poles which is intuitive because the
angle between the wavenumber vectors of the two sources will diminish with the increase in latitude for a given
azimuth separation.

Similarly, the threshold values on the θ-curve of the SHD manifold is given by

∆θdet-thr =
4
√
π

(η + 1)
√
η(η + 2)

√
2(SNR1 × L)

(
1 +

√
P1

P2

)
(130)

and

∆θres-thr =
4
√
π

(η + 1)
√
η(η + 2)

4

√√√√ 2

(SNR1 × L)
(
κ21 − 1

(η+1)2

)
(

1 + 4

√
P1

P2

)
(131)

The above two equations point out that the resolving power is independent of the azimuth in which the two
sources are placed which is clear because the angle between the wavenumber vectors of the two sources is just the
difference of their latitudes/elevations.
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D. Source Localization in Spherical Harmonics Domain

Using the final data model (110), the spherical harmonics MUSIC is given by

PMUSIC(θ, φ) =
1

y(θ, φ)SNSanm [SNSanm ]HyH(θ, φ)
(132)

where, SNSanm is the noise subspace obtained from eigenvalue decomposition of of autocorrelation matrix,

Sanm = E [anm(k)aHnm(k)]. (133)

Now using (126) and (45), (132) can be written as:

PMUSIC(θ, φ) = (Tr{[UH(0)PnU(0)] [F(s)RRTFT (s)]})−1

=
1

Tr{PnV(s)}
where Pn = SNSanm [SNSanm ]H , Pn = UH(0)PnU(0), V(s) = F(s)RRTFT (s).

(134)

This gives the differential geometry version of MUSIC algorithm in SHD.
Similarly, for the Minimum Variance Distortionless Response (MVDR) method

PMVDR(θ, φ) =
1

y(θ, φ)S−1anmyH(θ, φ)

=
1

Tr{PnV(s)}
where Pn = S−1anm , Pn = UH(0)PnU(0), V(s) = F(s)RRTFT (s)

(135)

gives the differential geometry version of MVDR method in SHD.

VII. SIMULATION RESULTS

Various results like “development”, CRB-analysis and MUSIC have been presented in this section. An Eigenmike
microphone array was used for this purpose. It consists of 32 microphones embedded in a rigid sphere of radius
4.2 cm (see Fig. 18).

Interestingly, the microphone positions of the spherical array form a 3D-grid. Using the angular positions of all
microphones as well as the radius of the sphere, rrT can be evaluated to give

rrT =




188.4692 0.0000 −0.4120
0.0000 188.7380 0.1398
−0.4120 0.1398 187.2728


 cm2 ∼= 13.72I3 cm2 (136)

Going by the definition given in (59), it is clear that the array geometry is a 3D-grid.
“Development” of the manifold for the same is depicted by Fig. 19. The circles represent “developed” φ-curves

while straight lines represent “developed” θ-curves of the manifold surface of the sensor geometry.
CRB-analysis (single source) for the spherical array is given by Fig. 20. The SNR value and the number of

snapshots are taken to be 10 dB and 100 respectively. It can be observed from the graphs that the CRB is nearly
constant throughout the FOV (due to spherical symmetry). The reason for some variations over the FOV especially
in Fig. 20(a) can be accounted to the use of limited number of microphones. The azimuth CRB (Fig. 20(b)) blows
up at the poles (θ = 0◦ and θ = 180◦) as expected.

The MUSIC spectrum for two sources placed at (θ, φ) = (20◦, 50◦) and (15◦, 120◦) is simulated for the Eigenmike
microphone array using (134) and is shown in Fig. 21.

VIII. CONCLUSION
The concepts of differential geometry have been successfully incorporated in SHD. Also, MUSIC has been

implemented for two sources as illustrated in previous section. A new theoretical framework has been suggested to
implement MUSIC in a different way by expressing the manifold vector by its differential geometry parameters,
which is more realistic and intuitive. The work described in this report has possibly opened new avenues to use
differential geometry in DF problems, and probably beyond that. Various issues to ponder regarding the material
covered in this report have been listed in the next section.
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Fig. 18. Microphone positions (in cm)
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Fig. 19. Development of θ- and φ-curves for Eigenmike microphone
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Fig. 20. CRB-analysis for the spherical array

IX. FUTURE WORK/ ADVANCEMENTS
• Higher dimensional manifold: The basic motivation behind implementing SH-MUSIC using differential geom-

etry is that the dimensionality of steering vector/ manifold vector in differential geometry version is usually
higher than the standard SHD. Normally, N ≥ 32 and η = 3, 4 that means the dimensionality of steering vector
is N = 32 and (η + 1)2 = 16, 25 respectively. Consequently, the dimensionality of manifold is higher in the
differential geometry version of SHD. This would mean that in DF algorithms like MUSIC where orthogonality
of steering vectors corresponding to DOA of incident signals is checked with the noise subspace, the steering
vector belonging to higher dimensional manifold can be advantageous in terms of detection/ resolution. Since,
the CRB-analysis has not been done for the differential geometry version, there is a scope for improvement
of resolution there.

• Tracking: Moving sources can be tracked by localising their positions at fixed time intervals. DOA corre-
sponding to each sensor at those fixed intervals can be represented on a real sphere. Those points can be
connected by smooth curves to get approximate trajectory of the sources. The real trajectory will correspond
to a trajectory of steering vector in complex higher-dimensional space too. Analysis of that complex trajectory
can be used to reduce processing required for localising source in the following manner. Depending on the
velocity and distance of source from the sensor array, the area on the manifold to be searched to localise
source at subsequent time instant can be surprisingly reduced. Clearly, there will not be any discontinuity in
source trajectory and hence, by optimisation the possible region, in which the DOA of source at subsequent
time instant will lie, can be estimated.

• RMSE-analysis: Quite similar to CRB-analysis, RMSE-analysis can be also be done in DSHD which is more
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realistic than CRB-analysis.
• Comparison with MVDR: The analysis done in this report can be compared with performance of other methods

such as MVDR, Beamforming etc.
• Dimensionality reduction: Various methods exist for realising higher-dimensional data in a lower one (typically

1, 2 or 3). In NLDR, various manifold learning algorithms exist like ISOMAP, MDS, PCA, LLE, Hessian LLE,
Laplacian, Diffusion Map, LTSA, etc. Similar to these, the concept of “development” has been discussed in
this report which is a kind of NLDR method. Every NLDR method has some peculiarity. “Development” uses
local geodesic mapping. An in-depth analysis of “development” can suggest improvement in DSH-MUSIC or
even allow one to suggest new DF method.

• Real manifold: Whether the real and imaginary part of the manifold individually can be meaningful is still
unexplored. There is a concept of real representation of manifold for symmetrical arrays. It is defined by the
following expression:

areal = expm(π‖r‖(1− cosφ)C)R ∈ RN (137)

and can be plotted for a r = [−1; 0; 1] as shown in Fig.22. These real representations can be further studied
to draw meaningful inferences.

APPENDIX A
PROOF OF EQ.117

Appendix one text goes here.

APPENDIX B
φ-CURVE DIFFERENTIAL GEOMETRY PARAMETERS

Appendix two text goes here.
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